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“Don't cross a river if it is (on average) four feet deep”.
-Nassim Nicholas Taleb, 2016 p.160

1. Introduction

When summarizing or analyzing a population, regardless of whether
it consists of hundreds or millions of individuals, it is the norm in most
social, medical, and health research to characterize it in terms of a
single number: the average. The reliance on average is pervasive in
descriptive, explanatory, or causal analyses. There is nothing inherently
wrong with an “on average” view of the world. But whether such a view
is actually meaningful, for populations or individuals, is another matter.
The average can obscure as much as it illuminates. It is a lean summary
of a distribution with no recognition of the rich variation between and
within populations that is necessary to ascertain its relevance. And, on
rare occasions, when summaries of variation are presented in analyses
of populations in epidemiology or clinical trials, they are often simply
and incorrectly labeled “error.”

In this issue, Angus Deaton and Nancy Cartwright (hereafter,
Deaton and Cartwright) provide a comprehensive assessment and cri-
tique of the use of Randomized Controlled Trials (RCTs) in the social
sciences (Deaton and Cartwright, 2018). Their insights and critique are
equally applicable to biomedical, public health, and epidemiologic re-
search. Here, we elaborate on one aspect of the problem that Deaton
and Cartwright mention in their essay, namely, that inference ex-
clusively based on “Average Treatment Effect” (ATE) can be hazardous
in the presence of excessive heterogeneity in responses. This inferential
problem applies both for the study population – those with the same
characteristics as the trial population, including even individuals within
the trial itself – and the larger population of interest the intervention
targets. While the latter (i.e., the issue of external validity in RCTs) has
received considerable attention, including by Deaton and Cartwright,
the former remains sidelined even as it underscores the intrinsic im-
portance of variation in any population.

Instead of expecting ATE from an RCT to work for any individual or
population, Deaton and Cartwright argue that we can do better with
“judicious use of theory, reasoning by analogy, process tracing, identification
of mechanisms, sub-group analysis, or recognizing various symptoms that a
causal pathway is possible” (Deaton and Cartwright, 2018). Their hy-
pothetical example of an RCT based on a classroom innovation in two
schools, St Joseph's and St Mary's, is most intuitive in this regard.
Deaton and Cartwright argue that even if the innovation turns out to be
successful on average, actual experiences in the school with comparable
composition may be more informative when other schools decide to
adopt and scale up the same innovation (Deaton and Cartwright, 2018).

Following a brief introduction to the problems of averages, we
elaborate on why variation or heterogeneity matters from a substantive
perspective and develop a generalized modeling framework to assessing
“Treatment Effect” (TE) based on two constructs of a population dis-
tribution: the average and the variance. We show that existing, but
woefully under-utilized, methodologies can be routinely applied to
enhance the relevance and interpretation of TE in a population. We
refer to treatment as a shorthand for any deliberate intervention and
not just in the strict medical sense. We focus on RCT settings here be-
cause both the mean and the variance in the outcome of interest are
expected to be equivalent at baseline due to randomization and any
differential in the post-treatment variation clearly indicates something
systematic. However, the points we raise in this commentary applies
equally, and in fact more importantly, to analysis of observational data.

2. The fallacy of averages

There is nothing innately problematic about focusing only on the
mean to summarize a distribution, provided it has some substantive
meaning and application to the real world. The yawning gap between a
statistical average and its application to the real world of individuals is
well recognized (Christakis, 2014). For illustration, we present two
examples from Todd Rose's thought-provoking book, “The End of
Averages” (T. Rose, 2016).
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In 1942, in a quest to discover an “ideal” form of a woman, Dr.
Robert L. Dickinson (an obstetrician) and Mr. Abram Belskie (a
sculptor) decided to measure ∼15,000 young adult women on 9 body
dimensions (e.g., height, bust, waist, hips, thigh, calf, ankle, foot,
weight) and, based on the “average” across each, sculpted a female
form called “Norma” (Creadick, 2010). They then decided to launch a
contest, “Are you Norma?”, encouraging women to submit their bodily
dimensions. Of almost 4000 submissions received, how many re-
sembled Norma on all 9 dimensions? Exactly zero. Indeed, Norma re-
presented a misguided ideal that was both highly desirable yet im-
possible to observe. What was the impact of this exercise? Instead of
confronting the individual variability around constructs of “normality”,
most doctors and scientists concluded that American women were
physically unfit (T. Rose, 2016).

The second example illustrates an even more consequential case.
During World War II, the United States Air Force aircrafts were crashing
at a higher-than-expected rate even though no mechanical and human
errors could be detected. After much probing, the Air Force commis-
sioned a study in 1950 to design a better fitting cockpit based on the
average of more than 4000 pilots on 140 body measurements. Yet,
when Lieutenant Gilbert S. Daniels did an exercise to see how many
pilots fit the so called “average pilot” on 10 dimensions (i.e., height,
sleeve length, crotch height and length, and circumferences for chest,
vertical trunk, hip, neck, waist and thigh), the answer was, yet again,
zero (Daniels, 1952; T. Rose, 2016). Yes, even in such an evidently
homogeneous group of airmen, it was impossible to find even one in-
dividual who fit the average on all dimensions, even when the average
was generously defined as falling within the middle 30 percent of the
range of values for each of the dimensions. Essentially, by designing the
cockpit to fit the average airman, it was ensured that it fit no one.
Daniels concluded, “It is virtually impossible to find an “average airman” in
the Air Force population […] not because of any unique traits in this group
of men, but because of the great variability of bodily dimensions which is
characteristic of all men” (Daniels, 1952 p. 1).

3. The reality of variation

The above illustrative examples point to an important limitation
concerning ATE even in an ideal RCT. For the ATE to be truly mean-
ingful even within the limited trial sample population, we argue, two
dimensions need to be considered.

First, there should be a systematic and a statistically significant
difference in the average outcome between the Treatment and the
Control groups in the expected direction (i.e., treatment, on average,
had the intended effect). If this occurs, the trial is considered a success
and, after few repeated demonstrations of a similar ATE, is usually
followed by recommendations for scaling up intervention.

A second consideration of equal importance is: of the sample po-
pulation that received the treatment, what percentage actually experi-
enced the intended effect? Stated differently, what is the regularity or
predictability with which individuals in the Treatment group experi-
enced the desired effect? In the extant literature, this dimension is
completely ignored. Consider two successful RCTs, both showing sys-
tematic differences in ATEs. However, in RCT 1, 90% of the individuals
in the Treatment group experience the desired effect while in RCT 2
only 10% of the individuals in the Treatment group experience any
therapeutic benefit. The remaining individuals in both groups are either
unaffected or experience changes in the unintended direction.
Assuming these are two types of treatments intended to have a similar
effect, which one of these would we consider more successful overall?
Arguably, the treatment from RCT 1! The substantially higher degree of
regularity and predictability with which the treatment worked in RCT 1
not only is desirable because the ATE now is more meaningful as it
applies to a majority, it also suggests a better understanding of who are
more susceptible to the treatment, and potentially the mechanism of
“why” it works, and the judiciousness in designing the treatment.

We consider a toaster to be working if it is able to toast the bread
every time it is used. One does not take solace from the claim that the
bread will pop up toasted, say, 2 out of every 10 times. In clinical
settings, however, if a drug works 20% of the time in RCT, compared
with 5–10% for a placebo, it is often accepted to be “effective”
(Christakis, 2008). For instance, among the top 10 highest-grossing
drugs in the United States, Humira, Enbrel, and Remicade each works
for 1 in 4 people who take them, and Nexium only works for 1 in 25
people who take it for heartburn. Statins are effective in lowering
cholesterol for as few as 1 in 50 individuals (Schork, 2015). The truth,
therefore, is that, most people taking RCT-validated, effective treat-
ments derive no benefit from them; even in the study population
(let alone the larger real-world population) (Christakis, 2008). As
clinicians struggle in their efforts to understand low adherence to sev-
eral prescribed medication regimens, it is worth considering if the low
adherence is because patients realize that the medication does not work
for them. In fact, the growing recognition that the effectiveness of
different treatments are vetted for the actual individual patient has
motivated “precision medicine” and N-of-1 trials (Schork, 2015).

The case for recognizing individuals and the variability that is ob-
served between individuals in matters of health was eloquently made
by Stephen Jay Gould in his classic commentary, “The median isn't the
message ” (Gould, 1985). In this personal story of statistics written after
Gould was diagnosed with abdominal mesothelioma, an incurable dis-
ease with a median mortality of only eight months, he noted two im-
portant aspects about statistical distributions. First, the distribution of
experiencing adverse events is more likely to be heavily skewed than
normally distributed. Second, the distribution may alter when circum-
stances change. Gould embodied these characteristics as he lived for 20
highly productive years after the initial diagnosis (and extremely
competent surgery).

Another example concerns why doctors tend to offer “Do Not
Resuscitate” orders to AIDS patients at much higher rates than to pa-
tients with advanced liver cirrhosis even though these two conditions
might have equal average prognoses (Wachter et al., 1989). It might be
tempting to conclude that doctors are more eager to avoid resuscitation
in AIDS patients, perhaps for discriminatory reasons. But the real reason
might be that the variance in survival in the AIDS group is much higher,
and there may be many more patients in that group who will die im-
minently. It may be to this fact (i.e., the greater variance) that the
doctors are more oriented rather than to the average survival of the two
groups; the doctors may reason that they can wait to offer DNR orders
to the cirrhosis patients (Christakis, 2014).

Most “successful” (i.e., a “statistically significant ATE” in the ex-
pected direction) social, health, and medical interventions, we spec-
ulate, will be characterized by such poor regularity and certainty with
which the treatment works among those who have received the treat-
ment. Closing the gap between a robustly estimated, but mythical,
“average” and its ability to say anything meaningful about the con-
stituents of both the trial population as well as the real-world popula-
tion has to be an integral part of any scientific endeavor that claims to
be “useful” in its motivation and inference.

4. Why this fixation with averages?

The origins of use of average to describe a characteristic or trait in a
population appears to trace back to Adolphe Quetelet's 19th century
notion of “l'homme moyen” or the “average man” (Krieger, 2012; Porter,
1985; Quetelet, 1842). This metaphor of “average man” was derived
from the fields of astronomy and meteorology where the results of
observations from multiple observatories were combined to determine
a star's celestial coordinates. Quetelet argued that the distribution of a
population's characteristics composed of “deviations” or “errors” re-
sulting from the imperfect variations of individuals is analogous to the
data produced by each observatory in astronomy, and hence can inform
a population's true (inherent) value (Krieger, 2012).
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This centuries-old concept of average as the most salient statistical
summary as well as the target of inference for scientific research con-
tinues. Geoffrey Rose, whose insightful and succinct writings provided
the foundation for a “population perspective” to health, argued ex-
plicitly that the basis for population health approach should focus
primarily in explaining and modifying the mean/average values on a
given variable of interest (e.g., blood pressure, cholesterol, body weight,
and alcohol intake) that differ across populations (G. Rose, 1989,
1991). The singular reliance on comparing means in two distributions
(e.g., Treatment and Control groups in RCTs) is based on the assumption
that, as Rose put it, “within each population the spread between the two
extremes is rather similar” (G. Rose, 1989 p. 411–2), i.e., the assumption
of “homoscedasticity” to use the regression jargon (Goldfeld and
Quandt, 1965).

It is not an exaggeration to state that whether the assumption of
homoscedasticity holds post-treatment (with variance in the outcome
measure being the same in the Treated and the Control populations) is
rarely tested and reported. But, this has consequential implications for
the interpretation of the ATE. Indeed, when the expectation that var-
iance within a population is the same across time or that variance is the
same across different populations was systematically tested in ob-
servational settings with body mass index (BMI) as the focal variable of
interest, it was found to be not true (S. Kim et al., 2017; Krishna et al.,
2015; Razak et al., 2013; Razak et al., 2016; Vaezghasemi et al., 2016).
Mean increases in BMI in a population were accompanied by increases
in the variance over time (Block et al., 2013; S. Kim et al., 2017; Krishna
et al., 2015; Stenholm et al., 2015); and, mean differences in BMI across
populations were also accompanied by different variances within them
(Collaboration, 2016; R. Kim et al., 2018; Razak et al., 2013;
Vaezghasemi et al., 2016).

So why are researchers fixated with “ATE”? Because that is typically
all we can statistically observe and estimate. In most research that in-
volves “treating” individuals, what we are really interested is Individual
Treatment Effect (ITE), the difference in expectations under treatment
condition and control condition for a given individual (Wiedermann,
2016). Of course, that is impossible to observe and estimate in a causal
sense; often, referred to as the “fundamental problem of causal in-
ference” (Holland, 1986). In a typical trial, individual i receives either
the treatment or a different exposure value (no treatment), and hence it
is impossible to simultaneously observe the outcomes for both condi-
tions on i (Holland, 1986). Therefore, identifying ITE constitutes a sort
of “missing data” problem, with half of the potential outcomes missing
(Subramanian et al., 2007).

It appears that our singular focus on ATE arises because that's all we
can do and not because the average has some substantive primacy in
hierarchy of inferential targets. It reminds one of the “Streetlight Effect”
critique of scientific research, i.e., when it is extremely difficult or even
impossible to cleanly measure the object of real importance, scientists
instead measure what they can, hoping it turns out to be relevant
(Freedman, 2010). ATE is the statistical solution that researchers rou-
tinely accept in place of ITE, but the real answers are more likely to be
hiding in the underlying distribution of ITEs.

In epidemiological research, however, there is a substantive argu-
ment that is presented to justify the sole focus on ATE. It has proved
almost impossible to demonstrate any relation between an individual-
level risk factor and outcome within a given population, whereas strong
associations can be found between population mean values and out-
come incidences (G. Rose, 2001). The neglect of individual hetero-
geneity or ITE is underpinned by the arguably widespread role of sto-
chastic and random processes that influence morbidity and mortality
(Davey Smith, 2011; G. Rose, 2001). For instance, Davey Smith criti-
quing the momentum in research focused on epigenetics and precision
medicine writes, “Several lines of evidence suggest that largely chance
events, from the biographical down to the sub-cellular, contribute an im-
portant stochastic element to disease risk that is not epidemiologically
tractable at the individual level.” (Davey Smith, 2011 p.537).

Indeed, attesting to this view, in observational studies, less than 2%
of the inter-individual variations in women's BMI was explained by
basic socioeconomic factors (R. Kim et al., 2018) and less than 1% of
the variability in child anthropometric status and growth failure was
explained by conventional risk factors routinely conceptualized as re-
presenting successful interventions (Mejía-Guevara et al., 2018). Poor
“discriminatory accuracy” (i.e., the accuracy with which an interven-
tion can discriminate who experiences the desired outcome) (Pepe
et al., 2004; Ware, 2006) has been shown for well-known categories
such as race/ethnicity for predicting influenza vaccine uptake (Mulinari
et al., 2017) and traditional risk factors such as blood pressure, BMI,
diabetes mellitus, cholesterol, and cigarette smoking for predicting
coronary heart disease (Merlo et al., 2017).

At the same time, to dismiss ITE as simply down to luck (Davey
Smith, 2011) is problematic as it is always individuals who experience
disease and mortality, not populations.

5. Generalized framework for assessing treatment effect

If the heterogeneity between individuals is indeed all stochastic
(and “natural”) (Davey Smith, 2011; Davey Smith et al., 2016), then
there should be no distinct patterning in the magnitude of variation
between individuals within a defined population. In light of recent
observational studies suggesting that the variation itself appears to be
patterned for many health and well-being measures, we extend the
following framework to better assess TE in RCT. In an RCT, the variance
in the outcome measure in both the Treatment and Control groups
should remain the same at the baseline (at least under the assumption
that they are drawn from the same population). Indeed, one attractive
feature of the RCT design is that not only will means in the outcome of
interest and other covariates be the same across Treatment and Control
groups, but also will the variances at the baseline (and any difference
will be simply due to chance). With such a starting point, however, if
the magnitude of variation in outcome differs across Treatment and
Control groups at the follow-up (post-treatment), that would imply
something more systematic happening.

The case to consider heterogeneity (between- and within-popula-
tions) can be routinely implemented within the well-known regression
framework. Consider the following familiar linear regression model:

= + +y β β T ei T i i0 0 (1)

where yi is, say, BMI for individual i; β0 represents the mean value of
BMI for individuals in the Control group; βT represents the mean BMI
differential for individuals in the Treatment group Ti. The term e i0 re-
presents the residual for each individual i, and assuming an Identical
and Independent Distribution (IID) a variance σe0

2 is estimated. The
parameter σe0

2 is the amount of variation that remains unexplained, after
accounting for the TE or Ti. It is also assumed that σe0

2 is the same in the
Treatment and Control groups. Much of what is presented from an RCT
is simply the βT .

At most, heterogeneity in the TE is assessed in the following form:

= + + + ∗ +y β β T β x β T x ei T i i i i i0 1 1 2 1 0 (2)

In Model (2), the ATE is now allowed to be different for different
sub-groups of x i1 . The parameter β2 is estimated for an interaction be-
tween Ti and x i1 specified in the fixed part of the regression model.
While Model (2) certainly is more desirable, it still is rooted in the
worldview of ATE, except now we have multiple ATEs for sub-groups
instead of one ATE across all the population. Further, there are reasons
why such an approach is often not advocated for RCT data (Dahabreh
et al., 2016). A substantive equivalent of Model (2) would be to stratify
the population by x i1 and specify separate Model (1) for each sub-group.
To our knowledge, this is the current “state of the art” to incorporating
heterogeneity into ATE assessments. While there is an increasing ten-
dency to calculate standard errors allowing for the possibility that re-
sidual variances may be different in the Treatment and Control groups
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(Deaton and Cartwright, 2018), σe0
2 (the parameter summarizing the

within-population variability) is still considered a “nuisance” parameter
under this approach.

Treating heterogeneity as a characteristic of the population that is of
substantive, intrinsic interest requires shifting our focus to the so-called
“random” part of a regression model. Following Goldstein (2005), a
generalized approach to incorporating the second moment of distribu-
tion into our regression would be as follows:

= + + +y β C β T e C e Ti C i T i Ci i Ti i (3)

In Model (3), separate coding is used (i.e., a dummy variable for
both Control and Treatment groups) and hence there is no intercept
(Goldstein, 2005). βC now estimates the mean BMI for individuals in the
Control group while βT directly estimates the mean BMI for individuals
in the Treatment group. Models (1) and (3) are substantively identical
in being able to ascertain the ATE (i.e., is βT different from βC in a
meaningful way). However, what distinguishes Model (3) from the
conventional Model (1) is the presence of two “residual” terms – one for
observations in the Control group (e CCi i) and one for observations in the
Treatment group (e TTi i). Model (3), thus, allows heteroscedasticity in
unexplained variation by modeling two separate variances: σC

2 : var-
iance in BMI between subjects in the Control; and σT

2 : variance in BMI
between subjects in the Treatment. With separate mean and variance
estimated for the outcome in the Treatment and Control groups, Model
(3) allows us to conceptualize a 3× 3 typology of TE based on an in-
tegration of all possible ATEs and variance in outcomes for the two
groups (Table 1). A similar typology has been proposed previously to
consider changes that occur both in the overall shift (average effect)
and in the shape of the curve (standard deviation) as a result of polices
and interventions (Benach et al., 2011, 2013). However, increase or
decrease in variability does not necessarily translate to changes in social
inequalities; we extend this framework in a more general sense and
discuss its applicability for different units of analysis.

The great majority of RCTs typically assess the three ATE possibi-
lities under the assumption of =σ σT C

2 2 (Row 1, Table 1), with a goal
often to show a desired effect of the ATE (i.e., >β βT C). However, each
ATE possibility has substantially different implication depending on the
associated change in variance in the outcome. While a trial that has null
effect on average =β β( )T C and same variance ( =σ σT C

2 2) (Type 1A) can
be concluded as having truly no TE (neither harmful nor beneficial),
increase in the Treatment group variance (1B) indicates that the
treatment actually worked extremely well for some but made others
considerably worse off. Conversely, even with the same null ATE, de-
crease in variance in the Treatment group (1C) implies that the treat-
ment had fairly consistent effect on the outcome for most individuals.

Consider now the possibility (2B) where even though it is a “suc-
cessful” trial ( >β βT C), the Treatment group variance increased post-
treatment >σ σ( )T C

2 2 , suggesting that the treatment had very hetero-
geneous effect. This could result from a differential TE by patient
characteristics (i.e., effect modification) and/or by different parts of the
underlying risk distribution (i.e., quantile regression) (Kent et al.,
2010). Under such scenario, should the treatment still be “scaled” up?
Perhaps the most desirable type of TE would be (2C) where ATE is
positive (, >β βT Ci.e., a successful trial in a traditional sense) and
variance in the outcome is also reduced in the Treatment group
( <σ σT C

2 2). This suggests that the treatment works regularly and pre-
dictably for a great majority of the participants, which is a key factor in
scaling up decisions.

Similarly, even among “unsuccessful” trials where treatment has an
ATE that is in opposite direction to what was intended ( <β βT C), dif-
ferent lessons can be learned from those resulting in a larger variance
( >σ σT C

2 2) versus a smaller variance in the Treatment group ( <σ σT C
2 2).

The former (3B) means that certain individuals experience therapeutic
benefits even as others have considerably worse outcomes post-treat-
ment, while the latter (3C) indicates that the treatment consistently had
a harmful effect for almost everyone.

We should note that modeling heterogeneity in TE is not restricted
to individual level, and Model (3) is equally applicable to populations
when treatment is at the “cluster” level:

= + + +y β C β T u C u Tj C j T j Cj j Tj j (4)

where, j represents the cluster. In Model (4), it is assumed that the unit
of randomization and unit at which outcome (y) is measured is at the
cluster/population/group level. Another variant of Model (4) would be
Model (5):

= + + + +y β C β T u C u T eij C j T j Cj j Tj j ij0 (5)

where, while unit of randomization is at the cluster/population/group
level, the unit at which outcome (y) is measured is individual such that
multiple individuals within j receive the same treatment giving the
classic multilevel model (Goldstein, 2011; Subramanian et al., 2003).

Regardless, the substantive point made here can be easily applied to
all these models; essentially, letting the TE vary at its own level. It is
important to note that what we outline above is different from the ty-
pical “random slopes” in a multilevel model, where ATE associated with
Cij and Tij (or any individual-level exposure in observational setting) is
modeled to vary across j cluster/population/group units (Subramanian,
2004).

Indeed, the conditions that would lead to 1 of the 9 possibilities in
Table 1 will depend on aspects such as the nature of the intervention,
the population being studied, the outcome measured, and many of the
issues that Deaton and Cartwright raise in their essay. Our goal here
was to provide a framework to initiate a discussion that allows us to
systematically and in a generalized manner anticipate and model het-
erogeneity both at the population and individual levels. In addition,
clearly reporting the percentage of individuals in Treatment group who
experience the desired effect as well as the relevant discriminatory
accuracy statistics can substantially improve the interpretation of the
regularity and predictability of TEs in RCTs.

6. Concluding remarks

As Deaton and Cartwright rightly argue, to strip the challenging
aspects of “why” something works from the question of “what works”
inadvertently undermines the very challenge and enterprise of scientific
inquiry. The thoughtful issues raised by Deaton and Cartwright on the
scope and limits of RCTs in assessing “what works” provides a catalyst
to substantively and methodologically incorporate ideas of hetero-
geneity at individual and population levels. While more complex trial
designs attempt to better capture the differential TEs – conditional ATE
marginalized over covariates, interaction tests, ATEs by subgroups – the
fundamental focus still remains fixated in estimating ATEs. It is far less
recognized that the relevance and interpretation of ATE depends on the
definition of populations and heterogeneity in ITEs. As Gould (1985)
reminded us: “Variation is the hard reality, not a set of imperfect measures
for a central tendency. Means and medians are the abstractions.” Much of
epidemiologic research and any research aimed at improving health
and well-being at individual and population levels could do well to
recognize this.
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