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Resource sharing in technologically defined
social networks
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Technologically enabled sharing-economy networks are changing the way humans trade and

collaborate. Here, using a novel ‘Wi-Fi sharing’ game, we explored determinants of human

sharing strategy. Subjects (N= 1,950) participated in a networked game in which they could

choose how to allocate a limited, but personally not usable, resource (representing unused

Wi-Fi bandwidth) to immediate network neighbors. We first embedded N= 600 subjects

into 30 networks, experimentally manipulating the range over which subjects could connect.

We find that denser networks decrease any wealth inequality, but that this effect saturates.

Individuals’ benefit is shaped by their network position, with having many partners who in

turn have few partners being especially beneficial. We propose a new, simplified “sharing

centrality” metric for quantifying this. Further experiments (N= 1,200) confirm the robust-

ness of the effect of network structure on sharing behavior. Our findings suggest the pos-

sibility of interventions to help more evenly distribute shared resources over networks.
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Resource sharing is rapidly gaining renewed significance in
economic and social life, and collaborative consumption1,
or the sharing economy2, has attracted great interest. These

novel types of sharing solutions to socioeconomic challenges have
the potential to substantially improve the utilization efficiency of
limited resources by reallocating them to those in need in ways
that are relatively costless to the sharer, and in ways that set the
stage for reciprocation by the recipient. The recent growth of this
disruptive economic model has been spurred by internet con-
nectivity and the proliferation of mobile computing and online
social networking platforms3–6. These innovations allow people
to connect in technologically mediated social networks and
exchange resources in a peer-to-peer fashion7–9. Indeed, it is
expected that individuals and local communities will organically
play a key role in these decentralized sharing systems2.

Human cooperation and resource sharing have been studied in
different contexts and with diverse methods, from observing
hunter-gatherer societies10,11, to conducting behavioral experi-
ments involving public goods games12–16, to exploring theoretical
models for cooperation equilibriums17–19. The emergence of
cooperation generally depends on how humans respond to their
social surroundings; cooperative partners generally induce
cooperative behavior14,20,21, and the number and structural
arrangements of available partners also matters22,23.

However, sharing-economy models include many novel fea-
tures, which have been relatively unexplored. For instance,
humans are both resource consumers and producers (or, prosu-
mers), and these roles change quickly as people make repetitive
sharing decisions2. These technology-mediated sharing schemes
are nowadays instantiated on an unprecedented scale with respect
to their volume, numbers of participants, and spatiotemporal
granularity of the shared resources. Typically, participants are
able to decide and employ a different sharing strategy for each of
their potential collaborators. These special features might affect
the decisions of humans who, for example, could attempt to
strategically disperse their limited resources to others, in antici-
pation of larger reciprocated shares in the future.

Furthermore, modern sharing models contain an underlying
network that prescribes humans’ sharing opportunities. For
example, ride sharing or food sharing is constrained by the
geographic proximity of the participants (spatial network con-
straints3); renewable energy sharing relies on the grid network
(technological network constraints4); and peer-to-peer resource
exchanges are conditioned on the matching of the users’ needs
(preference constraints5).

The impact of networks on our social and economic interac-
tions has been experimentally validated with respect to coop-
eration, and networks may have significant impact on modern
sharing interactions as well. For instance, the network might
increase the collaboration opportunities for some participants and
impede those of others, or amplify sharing inefficiencies in other
ways. Understanding features of socio-technical networks that
facilitate sharing is important in establishing large-scale and
successful sharing systems. Yet, there are few studies, if any, to
clarify the combined effect of technical specifications governing
social interactions and the behavior of humans engaged in
resource sharing over networks.

Here, we perform social network experiments which encom-
pass the salient features of modern sharing-economy models24.
Specifically, we examine individuals’ sharing strategy and the
aggregate outcome of humans’ interactions at the network level.
Furthermore, we study topological and behavioral changes asso-
ciated with the manipulation of the extent of connectivity possible
in the network as governed by the supposed range of devices that
specify the connectivity. We also explore how sharing inequality
arises and how it can be reduced through interventions on the

network structure. That is, we investigate what types of technical
and social networks facilitate equal (or unequal) distributions of
resources.

In order to examine the sharing behavior of the subjects, we
developed a novel sharing-economy game based on the notion of
a household Wi-Fi sharing service (“Wi-Fi sharing game”). There
is an increasing interest in the telecommunication industry in
mechanisms that enable users to share their Internet connections
or other types of network resources (e.g., node computing or
storage capacity)24,25. Although prior work in engineering has
proposed technical solutions for enabling such sharing, this work
neglects considerations arising from actual human behaviors24,26.
This sharing game, which simulates real-world applications25,
allows us to examine realistic sharing dynamics incorporating
actual human interactions. While framed as a game involving the
sharing of Wi-Fi over geographic distance, our setup has a
number of generic features that are applicable to many settings
where people have machine-mediated and technologically defined
social interactions and share a resource.

We recruited 600 human subjects via the online labor market
Amazon Mechanical Turk, and we randomly assigned them to
one of three conditions in a series of 30 sessions (10 sessions per
condition). Subjects were randomly assigned to a location in a
network of 20 nodes. The networks were generated using a ran-
dom geometric graph model27 that qualitatively captures the
spatial deployment of Wi-Fi networks (Fig. 1). The 20 nodes were
placed uniformly at random in a unit square, and two nodes were
connected if their Euclidean distance was smaller than a certain
connection radius. This latter parameter can capture the impact
of a communication technology (here, the coverage area of the
Wi-Fi routers) which, in general, may depend on a network
device’s capabilities (e.g., the range of the routers) and is
manipulable by central policy-makers (e.g., the manufacturer or
the Internet service provider).

Subjects then played this Wi-Fi sharing game for 15 rounds
(per session), without knowing each session’s duration in
advance. Each subject was given a certain amount of Wi-Fi
capacity, 30 units per round, which he or she did not need during
sequential time intervals (e.g., simulating an absence from his or
her residence). The subject could allocate part of this excess
resource (which was useless to them) to each one of her/his
neighbors during these idle hours, conditioned on the connection
range of the Wi-Fi router (which, inter alia, specifies the density
of the social network they are embedded in, from which they
could choose sharing partners). Albeit hypothetical, such fine-
grained sharing decisions are technically possible today and
commercially available24.

While making their decisions, subjects were only given the
information regarding their own resources and transactions. They
were informed neither about the exchanges of their neighbors
with the other players, nor about the amount of resource their
neighbors could share with them (see Methods). Subjects were
allowed to give their neighbors different amounts of the resource,
possibly recognizing past exchanges of their own or anticipating
future ones, and they did not have to allocate their entire capacity.
The non-allocated capacity neither carried over to the next round
nor counted towards their score (hence, it was a wasted resource).
Each subject’s final score depended only on the units received
from neighbors, which were regarded the subject’s wealth in the
game and converted to actual monetary compensation at the end
(see Methods). The goal of the game was to collect as much of this
as possible over the course of the game.

In this experiment, the individual’s choice was not whether to
cooperate or not, as in other social-dilemma situations, but rather
with whom and how much to cooperate (thus coming to define
the actual social ties from among those made possible by the
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underlying technological system)26,28. These decisions about with
whom and how much to cooperate were coupled due to the
limited resource at the disposal of each subject at each round29.
Therefore, the Wi-Fi sharing game has a competitive structure
that is not present in other cooperation games. On the other
hand, it also differs from other games, such as the Prisoners
Dilemma, since the ego’s actions do not directly affect her own
utility, and moreover there is coupling among the ego’s sharing
decisions towards the different alters30. Supplementary Figure 1
summarizes these characteristics.

Within this basic setup, we manipulated the connection radius
of network formation and hence the underlying network struc-
ture, with the following three values (based on unit square
dimensions): 0.25, 0.30, and 0.35 (Fig. 1). This experimental
condition represents the impact that an actual engineering
intervention might consequently have, namely (in this case) an
increase of the access range of the Wi-Fi routers in the game
scenario (e.g., by improving the protocol it employs, or the
antenna gain). Wider connection ranges increased the exchange
options for each subject. That is, the underlying network density
(the fraction of ties present in the network versus the number of
all possible ties) increases monotonically with the connection
range. While the geographical relative position remained the
same (i.e., the subjects did not relocate), the geodesic structure of
the possible interaction network varied with the technological
manipulation. We randomly generated networks with 10 different

X–Y coordinate settings of 20 nodes with each of the three
connection radii. Subjects were randomly assigned to one of the
30 networks (10 network settings by three connection radii) and
not allowed to participate in more than one session.

We find that the resulting network structure affects the var-
iance in acquisition of the shared resource, and that denser net-
works decrease any wealth inequality, but that this effect
diminishes, revealing a saturation property. Individuals’ benefit is
shaped by their network position, and the benefit increases if they
have a particular kind of structural leverage, namely, if they have
many partners who in turn have few partners. We propose a new,
simplified “sharing centrality” metric for quantifying this. Further
experiments confirm that the impact of network structure on
sharing behavior is robust to revealing more information about
partners (such as the number of their trading partners or the
resources they receive). Our findings suggest the possibility of
network interventions to help more evenly distribute shared
resources by controlling network structure using technological
specifications.

Results
Effect of connection range on wealth distribution. Variation of
the connectivity range affected the realized network structure and
the cumulative wealth inequality (see Fig. 2 for network snap-
shots, including of both the underlying technologically defined
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Fig. 1 Sharing game with different connection ranges. The game simulates a household Wi-Fi sharing service as an example of sharing an otherwise
unusable resource. Subjects can share their resource (Internet access) with neighboring households within a particular geographic range. We generated
network structures using a random geometric graph model. The model places 20 nodes uniformly at random in the unit square; two nodes are joined by an
edge if the Euclidean distance between the nodes is within the specified radius. We manipulated the connection radius with three levels: 0.25, 0.30, and
0.35. By increasing the radius, as shown by the light blue circles, the network density increases; for example, the player placed at node A increases the
number of neighbors with whom she or he can potentially share the resource (thus forming an actual social tie, based on the underlying technological
network)
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network and the actual, realized social network, based on sharing
interactions). The average subject’s wealth (i.e., the total units
subjects received during the game) did not vary with the con-
nection range (see Supplementary Figure 2), but the Gini coeffi-
cient31 of the subjects’ score decreased noticeably as the
connectivity range increased, i.e., there was more even sharing as
the range of the “device” and network density was increased
(Fig. 3). However, the change in wealth inequality is diminishing
with the increase in network density. That is, while the Gini
coefficient decreased by 0.074 from the radius of 0.25 to 0.30 (P <
0.01; paired t-test with N= 10 sessions), it decreased by 0.022
from the radius of 0.30 to 0.35 (P= 0.11; paired t-test with N=
10 sessions). We also confirmed the non-linearity between net-
work density and sharing inequality with a quadratic regression
model (see Supplementary Table 1). This suggests a threshold
property in terms of the possible reduction of sharing inequality
and the necessary cost for achieving it.

The final Gini coefficients, which are shown in Fig. 3, result
from a combination of the underlying network structure and the
observed human behaviors. To clarify the structural effect
separately from the behavioral one, we introduce a null model
that shuffles the receivers to which subjects gave the resources
while keeping the diversity of the observed allocations from the
actual experiment. Figure 4 shows the comparison of the actual
dynamics of the Gini coefficients with that of the random-shuffle
simulations with 1000 repetitions. At the beginning of a session,
the actual Gini coefficients are almost identical to the simulation
results that represent the structural impact on wealth inequality.
As the session progresses, the actual wealth inequality among
subjects decreases to a steady level, while the structural impact
does not change. Individuals’ resource allocation strategy causes
the improvement in wealth inequality over the null model. On the
other hand, in all cases, the subjects do not reach the most
efficient sharing equilibrium, although, in theory, a zero Gini
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Fig. 2 Network snapshots and actual realized exchanges of a resource with different connection ranges. The network samples have the same geometric
configuration (i.e., location of the nodes on the plane) but different connection ranges. In the social networks, node color indicates total received units (with
redder nodes being richer; with bluer nodes being poorer). Arrow width indicates total given units from sender to receiver (with line width indicating more
giving to the neighbor indicated with the arrowhead). In addition, the graphs exclude extra-thin arrows according to the threshold that the given units are
less than 10% of total resources. Both properties are normalized with the number of rounds. As the session progressed, the players selected sharing
partners to seek mutual exchange. As a result, the wealth gap decreased
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value is attainable for the tested graphs32. The remaining wealth
inequality is highly correlated with the hypothetical one reflecting
only network structure (Pearson correlation coefficient= 0.872;
P < 0.01 with N= 30 sessions). This result demonstrates that not
only human behavior but also network structure affect wealth
inequality in sharing. We find similar results with another null
model where subjects engage in equal sharing with their
neighbors (see Supplementary Figure 3).

Individual reciprocity given network constraints. Next, we
explore individuals’ resource allocation strategy and the effect this
has on wealth inequality. We find that subjects are likely to seek

reciprocity in their transactions (Fig. 5a). The individual-level
analysis shows that, on average, subjects increase their allocation to
the neighbors who had given more than they received at the pre-
vious round, and the opposite is also true. The estimated coefficient
for the impact of the last-round sharing balance on the next-round
increase (or decrease) in resource sharing to the neighbor is sig-
nificantly positive for all the connection radius treatments (P < 0.01
for all the connection radius treatments; regression analysis with
random effects for rounds and individuals; see Supplementary
Table 2). The reciprocal tendency is also statistically significant
across all network degrees (number of neighbors) of subjects.

Subjects increase their allocation to their generous neighbors
(i.e., those from whom they receive more resources than what they
have offered to them in the previous round) and decrease it to
their stingy neighbors. Note that each individual has only 30 units,
and hence fully reciprocated interactions are not always possible.
Despite this limitation, however, our findings are consistent with a
reciprocal strategy29,33–36 instead of an exploitative strategy37,
where the latter would have led subjects even to reduce the
allocations towards the neighbors who already respond with high
sharing (hence needed no further incentive to collaborate). While
direct reciprocity increases with increasing number of neighbors
per subject (i.e., network degree) up to a degree of 3 (i.e., when
subjects have three neighbors), the impact of network degree
appears to diminish when subjects have more than three
neighbors in this game setting (see Supplementary Figure 4).

As a result, on a network level, in general, subjects develop
symmetric, reciprocal exchanges where they exchange equal
amounts of resources (Fig. 5b). The network-level reciprocity38
reaches significantly higher values compared to hypothetical
expectations generated by the random-shuffle model (P < 0.01 for
all the connection radius treatments; paired t-test with N=
10 sessions at round 15). The individuals’ reciprocal behavior
reduces the gap between given and received units in dyads to
some extent, and so the wealth inequality among subjects
decreases over the rounds (Fig. 4).

Figure 5 also shows how individual-level and network-level
reciprocity varied in different network graphs. The networks with
a small radius of 0.25 show a smaller impact of the last-received
on the next-given resource amounts, compared to the networks
with radius 0.30 and 0.35 (Fig. 5a). As a result, subjects in the
networks with radius 0.25 reached a lower level of reciprocity
over the rounds, compared to those in the networks with radius
0.30 and 0.35 (Fig. 5b). As the random assignment ensures no
difference in subjects’ distribution with respect to their innate
sharing propensity, this difficulty in carrying out the reciprocal
allocation is due to the network topology.

Centrality metrics for network sharing. The network-level
analysis shows structural as well as behavioral effects on sharing
inequality. The individual-level analysis also suggests that, while
subjects show high reciprocity in their behavior, the resource
sharing benefits differed among individuals due to their network
position. Prior studies suggested that the probability of a
mutually-agreed exchange between connected nodes is an
important structural feature of the geodesic location of a node,
and that this affects its expected benefits in bargaining net-
works37. The probability was termed graph-theoretic power index
or GPI (the original paper called the measure “GPI3,” but we
simply call it GPI here). We measured GPI with respect to sharing
networks and studied whether it is correlated with the benefit
each node accumulates (Fig. 6a; see the caption of Fig. 6 for
measurement details pertaining to GPI). We also compared the
predictive power of the GPI metric with other node centrality
metrics, including a simplified one, which we term “sharing
centrality,” that we introduce here.
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Fig. 4 Changes in Gini coefficient across rounds. The solid lines show the
average of experimental results; the dashed lines show the expected value
when each individual randomly allocates their resources while preserving
the diversity of the allocation from the experiment. Shaded areas denote
95% confidence intervals (N= 10). The actual subjects reduced wealth
inequality through their interactions, compared to identical circumstances
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We find that GPI is highly correlated with the total received
units of each subject in the game (the correlation coefficient is
0.70, P < 0.01; Pearson correlation test; Fig. 6b). This structural
feature of the geodesic location of a subject largely determines a
subject’s wealth in a sharing network. On the other hand, other
conventional network centrality measures, such as degree
centrality (as noted above), betweenness centrality39, or eigen-
vector centrality40 are less associated with wealth accumulation
(Fig. 6d). We also test Bonacich power centrality with several
negative beta values41, and find that it is less predictive than GPI
for individual wealth (see Supplementary Figure 5). Furthermore,
the correlations between GPI and wealth were statistically the
same across the connection radii (see Supplementary Figure 6).
We also tested these centralities using regression models
incorporating a random effect for sessions and find similar
results (see Supplementary Table 3).

Why is individual wealth determined by GPI rather than
network degree (or the other network structural attributes)? In
contrast to information flow, where being connected to well-
connected people is helpful, individuals are more likely to reap a
benefit in holding a monopolistic position when it comes to
resource sharing. That is, in situations like this, not only must
they have many neighbors (high degree of ego) but also their
neighbors should have few neighbors (low degree of alter)37. This
effect continues to further geodesic distances. For example, if your

neighbor’s neighbor has many neighbors, your neighbor is
unlikely to share many resources with him or her; thus, you are
likely to receive many resources from your neighbor because of
the high degree of alter’s alter.

Motivated by this observation, we introduce a new type of node
centrality that we name “sharing centrality” and define it as the sum
of the reciprocal degrees of the one-hop neighbors of the ego
(Fig. 6a). We find that this metric predicts the individual wealth
significantly better than the degree centrality and at least as well as
the GPI metric (Fig. 6c). But, in contrast to GPI, the sharing
centrality requires only local information. This light computational
load is essential for interventions in large-scale and dynamic sharing
networks. In modern sharing circumstances where millions of
people continue to move in and out, previous global knowledge of
the entire network structure, which GPI requires, is impractical. In
addition, sharing centrality can clarify how much network structure
itself affects individual wealth through sharing interactions. If
individuals randomly responded to their neighbors (i.e., the
random-shuffle model), sharing centrality would be perfectly
correlated to individual wealth (the impact without actual human
behaviors is obscure in GPI; see Supplementary Figure 7).

Degree assortativity and wealth inequality. In light of this flip-
flop impact of network degree, degree-disassortative networks42

Experiments Simulations with random shuffle
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Fig. 5 Subjects reciprocate to their neighbors. a Individual-level reciprocity. The graphs show how much a subject increases (or decreases) their share
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to in that of radius 0.30 or 0.35. b Changes in network-level reciprocity across rounds. The reciprocity of the weighted networks is calculated by dividing
the total reciprocated resources (i.e., the sum of symmetric sharing) by the total shared resources in the network. The solid lines show the average of
experimental results; the dashed lines show the expected value when each individual randomly allocates their resources while keeping the diversity of the
observed allocation from the experiments. Shaded areas denote 95% confidence intervals (N= 10)
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are likely to have large variance of sharing centrality and, as a
result, large wealth inequality in resource sharing, compared to
degree-assortative networks. We tested this hypothesis with
another, separate experiment using two simple networks
(Table 1) (N= 150 subjects in 10 sessions). The networks have
the exact same degree distribution, but opposite degree assorta-
tivity. Since the degree distribution was the same, subjects played
the game in identical local conditions. Nevertheless, the network
having negative degree assortativity, with large variance of shar-
ing centrality, generated high wealth inequality, compared to that
of positive degree assortativity (Table 1). That is, regardless of

network density and degree distribution, sharing centrality alone
appears to influence wealth inequality in sharing networks.

Robustness of the network effect on sharing behavior. Last, in
separate, further set of experiments involving 1200 subjects, we
find that the structural impact on wealth inequality is robust even
when subjects obtain additional information about their local
neighbors’ status. In the “wealth-visible” condition, subjects could
observe, in addition to the previous-round transactions, the total
units previously received by each of their direct neighbors. In the
“degree-visible” condition, subjects could additionally see the
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Fig. 6 Power index and sharing centrality are highly correlated with the economic benefit in a sharing network. a Graph-theoretic power index (GPI)
captures the probability the focal node will be engaged in a successful mutual selection with one of his or her alters. This in turn, gives the node a structural
advantage in bargaining in strategic interactions. The easiest way to understand how the geodesic position benefits a node is the following simple scenario.
Suppose node A randomly selects one of her neighbors (say node C) in order to allocate all its resource; then if C has also selected node A as its unique
collaborator, asymmetric and fully reciprocal relationship can be established and both node C and A will stop seeking collaborators. Otherwise, node A can
proceed and select another node as a potential collaborator. This iterative process continues until a mutual selection is achieved for every possible pair of
nodes. It is easy to see that each dyad has a different probability of mutual selection throughout this iterative process. Namely, the probability of mutual
selection (by concurrent nomination in an repetitive process) is 0.6 for the edges a, b and c, d, and 0.2 for a–c and a–d. In total, this means that node A can
find a full reciprocator with probability 1, while for node B the probability is 0.6 and for nodes C and D it is 0.8. Sharing centrality is the sum of reciprocal
network degree among alters. The centrality approximates the structural advantage, which GPI represents, but using only local topology information. b–d
Dots indicate several measures of network centrality for each subject and his or her total received units at the end of game (out of N= 600 subjects who
participated). Dot color indicates the network’s connection radii; red for radius= 0.25, gray for radius= 0.30, and blue for radius= 0.35. GPI and sharing
centrality show clear correlation with their economic benefit from a sharing game (b, c). This correlation is higher than all the other centrality measures (d).
The “r” values indicate Pearson correlation coefficients (P < 0.01 for all the correlation coefficients)
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number of connections (network degree) of their neighbors. The
objective here was to test if this information changed how sub-
jects assessed their neighbors’ sharing; for instance, a neighbor
who shared little but had high degree can be seen to have many
conflicting demands for sharing and therefore might be tolerated
and treated more generously, or a neighbor who already receives
many resources from their partners (a wealthy neighbor), might
be seen as one who does not need additional resources.

The statistical analysis including the above two visible
conditions shows that the additional information had no impact
on wealth inequality in a sharing network (see Supplementary
Table 1). Moreover, GPI substantially determines individual
wealth in both conditions (see Supplementary Figure 8). However,
the correlation between GPI and wealth in the wealth-visible
sessions is significantly smaller, compared to that in the baseline
and degree-visible condition (P < 0.01; perason correlation test),
which reveals that this information weakens the effect of the
network structural advantage. Similar effects have been observed
in social-dilemma experiments43, but here the impact of providing
this information is smaller and not enough to fundamentally
change individual-level reciprocity (see Supplementary Figure 9)
and group-level wealth inequality (see Supplementary Table 1).
Our sharing centrality measure yields similar results (see
Supplementary Figure 10). In short, when it comes to sharing,

people here act according to who they are connected to, and how
much those people have shared with them, and are less influenced
by how wealthy or connected their partners are.

Discussion
We find that manipulable technological changes can decrease
social inequality by affecting network density. While reciprocal
resource allocation in individuals reduces overall wealth
inequality, network structure still affects each individual’s sharing
outcomes. We identify the cumulative probability of forming a
mutual exchange as a key structural determinant of individual
advantage in a sharing network. And we propose a new, simpler
sharing centrality metric to quantify this property. We also
confirm that the sharing dynamics are less affected by informa-
tion about partners’ wealth and options to share with others.

As for individual behavior, we find that subjects form largely
reciprocal relations, ones where they adjust their actions in an
attempt to exchange equal amounts. This finding is in line with
previous studies revealing inherent reciprocity in social exchan-
ges, even when this might result in utility loss29,33–36. Indeed, this
is also the case here, as oftentimes non-reciprocal or asymmetric
relationships might have resulted in larger resource accumula-
tions for some players32. To a certain extent, this behavior might
also be attributed to the specifically social value that humans
attach to trading with their peers44. Prior work in wireless net-
works assumes either that humans will comply with centrally
designed protocols (hence not factoring the human aspect)24 or
that they will be considered fully-rational agents (which is also
not reasonable)26,32,45. Our results suggest that these models
might not capture actual sharing dynamics because they ignore
the social value of the resource sharing process.

Our game differs from other well-studied social-dilemma sce-
narios17 in many respects: every player has to decide independently
whether they will collaborate with each of their neighbors; the
collaboration involves no cost; ego’s decisions about allocations to
several neighbors are coupled due to the limited resource that
needs to be shared among them; and nodes with common
neighbors compete indirectly for their resources. As these features
encompass the basic aspects of decentralized sharing-economy
models24, we believe our findings extend to other types of exchange
of finite resources or services including the sharing of fixed assets
(like cars), sharing of time46, allocation of budget or attention28,
and exchange of finite favors35. They also give practical insights
regarding technological applications intended to enable them.

For example, our experiments show that network design fea-
tures affect the outcome of sharing interactions and suggest ways
to intervene in order to enhance sharing beyond manipulating the
radius of social interactions. For instance, by manipulating the
sharing centrality (or other topological features47,48) with the
addition (or elimination) of links between certain nodes, the
inequalities stemming from network structure might be reduced,
or the amount of sharing might be increased. To extend this
example, social sharing may be greatly facilitated through the
thoughtful provision of extra resources in the form of public
goods. For example, a few Wi-Fi hot spots provided by a central
authority and strategically positioned (so as, for instance, to
reduce disassortativity) might facilitate broader sharing by all
members of a network, creating cascades of benefit. Our result
suggests that, although one simply could place the Wi-Fi spots in
locations with the greatest number of people (i.e., increase the
degree of high-degree nodes), this might not reduce the sharing
gap because it does not take into consideration the flip-flop
impact of network degree. Another potential intervention would
be to restrict or cut certain connections between parties (e.g., by
controlling sharing options that users are given), even when they

Table. 1 Economic inequality depending on degree
assortativity

Network A Network B

Network structure
Number of nodes

Degree= 1 6 6
Degree= 2 3 3
Degree= 3 3 3
Degree= 5 3 3

Network density 0.171 0.171
Degree assortativity −0.744 0.233
Sharing centrality

Degree= 1 0.2 0.417
Degree= 2 0.533 1.2
Degree= 3 0.9 1.4
Degree= 5 3.167 1.567
S.D. 1.114 0.493

Experiment result
Total received units

Degree= 1 130.8 270
Degree= 2 355 427
Degree= 3 443.9 517.1
Degree= 5 838.3 475.8

Gini coefficient 0.413 0.194

Networks A and B have the same degree distribution but different degree assortativity and hence
distributions of sharing centrality. The experimentally observed Gini coefficient (calculated by
total received units of the 150 subjects after 15 rounds) in Network A is more than twice as large
than as that in the Network B in the sharing setting (N= 5 sessions per network)
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are within range, which paradoxically may actually enhance
overall sharing49, or targeting participants based on their sharing
centrality and teaching or nudging them to adopt more effective
allocations to achieve reciprocity, which may lead to an even
distribution of resources more quickly50. Our experiment sets the
basis for further exploration of how to address disparities in a
community-oriented sharing-economy, including applications
unconstrained by geography.

There are features potentially relevant to inequality in sharing
transactions that our experiments do not explore, for example,
how peer sanctions or institutions might affect the outcome51.
One could also explore situations where (i) the resource could be
kept by the ego and used later (this would make the sharing
decision harder); or (ii) there was a punishment/tax for wasting
resources; or (iii) the players could transfer the resources they
received from their neighbors to others; or (iv) there was a sig-
nificant cost for sharing resources. Another promising topic is the
effect of peer reputations on sharing behaviors6,52 (indirect
reciprocity), in keeping with notions of costly signalling11.

The sharing economy is not a new idea. For example, hunter-
gathers enact their social allegiances and secure a more regular
diet through the institutionalized sharing of food10. From a his-
torical perspective, sharing networks today may be a reflection of
human nature35 and a revival of ancient customs53—albeit driven
by new, sophisticated information technology. The evidence
presented here suggests that technological manipulations might
induce greater reciprocation in resource sharing. Given that
exchange is a foundation of human society54, our results may
help not only to design an equitable sharing service, but also to
address fundamental challenges with respect to our collective
well-being.

Methods
Experiment setup. A total of 1800 unique subjects (plus a further 150 for the test
of degree assortativity (Table 1)) participated in our incentivized economic game
experiments. They were recruited using Amazon Mechanical Turk (AMT)55,56, and
they interacted anonymously over the Internet using customized software playable
in a browser window (available at http://breadboard.yale.edu). Each session had
20 subjects at the outset. The subjects repeatedly interacted with their connected
neighbors through a sharing-economy “Wi-Fi sharing game” that we developed,
over 15 rounds. We completed 10 sessions for each treatment combination of the
three levels of connection range (in networks generated with geographic graphs
(with ranges of 0.25, 0.30, and 0.35 in a unit square)) crossed with three different
conditions regarding neighbors’ information (invisible, wealth-visible, and degree-
visible). In all, 90 sessions were conducted from March to September 2016. In each
session (after passing various tutorials), the subjects were paid a $2.00 show-up fee
and $2.00 payoff for game completion; in addition, each subject’s final score (i.e.,
total units received from their neighbors) summed over all the rounds was con-
verted into dollars at an exchange rate of $1.00= 200 units. All the subjects were
informed about the use of their behavioral data for research purposes upon
enrollment in the experiment (see Supplementary Methods). This research was
approved by the Yale University Committee of the Use of Human Subjects.

Information availability. The players had access only to the necessary information
for the game. First, the players were not informed of the actual number of rounds
since this might have affected their sharing strategy towards the end of the game.
Second, they were not informed of the overall network structure, i.e., they did not
have information about the geodesic locations of all nodes in the network. Each
player was able to see and interact only with their immediate neighbors. They were
only able to observe the points they received from their neighbors (see Supple-
mentary Methods for the actual game view).

In some experiments, we manipulated the players’ information in the additional
information-visibility scenario. In the degree-visible condition, the players were
additionally informed about the degree (number of neighbors) of each of their
neighbors. In the wealth-visible condition, they were additionally informed about
the total score of their neighbors (but not about their degree, i.e., how many
neighbors they had). When a player was assigned to either information-visible
treatment, they were able to see the additional information of each neighbor in the
network diagram and in the information table on their game screen (see
Supplementary Methods for the actual game view).

We confirmed using subjects’ IP address that all the pairs in the game networks
came from different locations. That is, subjects could not share their screen
physically.

Network formation. In the game, subjects were assigned to a location in a network
of 20 nodes. The networks were generated using a random geometric graph
model27 that qualitatively captures the spatial development of the Wi-Fi networks
in many residential areas. The 20 nodes were placed uniformly at random in a unit
square, and two nodes were connected if their Euclidean distance was smaller than
a certain connection radius (Fig. 1). We manipulated the connection radius of
network formation using the following procedure. First, we created 30 networks
with 0.30 as the connection radius (10 networks for each information-visible set-
ting: base, wealth-visible, and degree-visible conditions). In this process, we
excluded networks having isolated nodes in order to compare players’ sharing
inequality between the different information visibilities with the same network size.
Second, we created networks with 0.25 and 0.35 as the connection radius using the
same node locations in a unit square (i.e., X–Y coordinate settings of nodes) as the
first set of networks with 0.30 as the connection radius. That is, while the geo-
graphical relative position remained the same, the geodesic structure of the
interaction network varied with the connection distance.

Players dropping during the game. At any point during the game, if a player was
inactive for 45 s, they were warned about being dropped. If they still remained
inactive after 45 s, they were dropped. In some instances, additional players had to
be dropped (cascade drops), namely the ones who had degree 1 and their only
connection was the player who was dropped. As too many dropped players
destructively affect the network structure and the sharing dynamics of
the remaining players, we did not use the sessions where more than five players
were dropped during the game (i.e., a retention rate ≤75%). Overall, 4 players
dropped in two sessions; three players dropped in 11 sessions; two players dropped
in 21 sessions; one player dropped in 25 sessions; and no player dropped in
31 sessions. Since the players who dropped in the game changed the network
structure, we calculated all the node metrics in each network of 15 rounds and used
the average for each subject. The dropped players were prohibited from joining
another session of this experiment.

Additional test of degree assortativity. In addition to the main experiments
(with N= 1800), we recruited 150 unique subjects from AMT and tested the effect
of degree assortativity on sharing inequality (Table 1). We used two specially
designed networks (see the network snapshots in Table 1). Both networks consist of
15 nodes and 18 edges. Both have the same degree distribution: six nodes of 1
degree, three nodes of 2 degree, three nodes of 3 degree, and three nodes of 5
degree. Each network had 15 players. However, the two networks have different
connections between low-degree and high-degree nodes: one network has negative
degree assortativity (−0.744) and the other has positive degree assortativity (0.233).
We conducted five sessions for each treatment, and each session had 15 rounds.

Data availability
The experimental data, all the figures that have associated raw data, and the
programming codes are stored at http://humannaturelab.net/publications/resource-
sharing-in-technologically-defined-social-networks at the Human Nature Lab Data
Archive.
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