
3 7 0  |  N A T U R E  |  V O L  5 4 5  |  1 8  M A Y  2 0 1 7

LETTER
doi:10.1038/nature22332

Locally noisy autonomous agents improve global 
human coordination in network experiments
Hirokazu Shirado1,2 & Nicholas A. Christakis1,2,3,4

Coordination in groups faces a sub-optimization problem1–6 and 
theory suggests that some randomness may help to achieve global 
optima7–9. Here we performed experiments involving a networked 
colour coordination game10 in which groups of humans interacted 
with autonomous software agents (known as bots). Subjects 
(n = 4,000) were embedded in networks (n = 230) of 20 nodes, to 
which we sometimes added 3 bots. The bots were programmed with 
varying levels of behavioural randomness and different geodesic 
locations. We show that bots acting with small levels of random noise 
and placed in central locations meaningfully improve the collective 
performance of human groups, accelerating the median solution 
time by 55.6%. This is especially the case when the coordination 
problem is hard. Behavioural randomness worked not only by 
making the task of humans to whom the bots were connected easier, 
but also by affecting the gameplay of the humans among themselves 
and hence creating further cascades of benefit in global coordination 
in these heterogeneous systems.

Collective action and large-scale cooperation are important 
 challenges1–3. Most work on cooperation has focused on the social 
dilemma aspect, namely, on getting people to be willing to make 
 sacrifices for the greater good11,12. Yet, even when this dilemma can be 
addressed, there remains another substantial problem: coordination4–6. 
The difficulty of achieving optimal collective action in groups may arise 
not only from the conflicting interests among individuals, or between 
individuals and their group, but also as a consequence of the inability 
of individuals to effectively coordinate their actions globally. Even if 
all individuals behave properly in their local interactions, this may not 
result in the optimal outcome for the whole community1,2.

Previous theoretical work has suggested a surprising, even  paradoxical,  
solution to the coordination problem: adding ‘noise’13–15. Noise is 
 usually defined as meaningless information, and it is often seen as 
 problematic16. When it comes to optimization, however, noise can help 
a system to reach a global optimum. For example, mutation has an 
essential role in evolution17; error can facilitate search for  information18; 
random fish schooling may enhance survival19; and cooperation may 
benefit from deviant behaviour7–9,20.

Here, we evaluate the benefits of noise in addressing the coordination 
problem of human groups21,22. As human interactions are embedded 
within social networks, we also consider the impact of network  position 
on the potentially beneficial effect of noise23. We first characterize 
the collective-action dynamics of networks of people interacting in 
a  classic colour coordination game10. Then, we test the effect of noise 
on collective performance using autonomous software agents (bots), 
manipulating both the noisiness and geodesic placement of the bots. 
By adding bots into experimental social networks, we therefore explore 
the performance of heterogeneous systems involving both real humans 
and autonomous agents, while also demonstrating a possible practical 
solution to the problem of global coordination itself.

We recruited 4,000 unique subjects online and randomly 
assigned them to 1 of 11 conditions in a series of 230 sessions (see 

Supplementary Information). Subjects were assigned a location in a 
network of 20 nodes, generated by a preferential attachment model24; 
the network structure was created de novo for each session by  attaching 
new nodes (each with two links) to existing nodes; and subjects  
were placed into the resulting networks at random. The collective goal 
is for every node to have a colour different than all of its neighbour 
nodes10. This  colour coordination game successfully captures the  
problem of  systematic  failure by sub-optimization in coordination; that 
is, while each  individual attempts to reach a solution that is optimal  
for that individual, this may not be optimal for the whole group  
(Fig. 1a).

In the sessions, each subject was allowed to choose a colour from 
three choices (green, orange and purple) at any time. The number of 
colours made available was the minimum necessary to colour the entire 
network without conflicts, which is known as the chromatic number; 
and all networks in our experiments are, by construction, globally  
solvable. However, while all the networks allowed the subjects to reach 
the collective goal, the networks could (by chance) vary in their number 
of solutions (that is, the networks ranged from 6 to 13,824 possible 
colourings that would work, known as the chromatic polynomial; see 
Supplementary Information).

Subjects could see only the colours of neighbours to whom they were 
directly connected, in addition to their own colour. Thus, although a 
subject might have solved the problem from his or her own point of 
view, the game might continue because the network still had conflicts 
in other regions of the graph. In terms of the optimization problem, 
the cost function of the game is expressed as the sum of the number 
of conflicts. As in past work10, the subjects got paid according to how 
long it took for all conflicts in the network to be resolved, and they 
had to complete the task within 5 min (see Supplementary Information  
for details).

Within this basic setup, we then introduced three bots into the 
network in exchange for the same number of humans (no bots were 
placed in the control sessions; see Supplementary Table 1). Subjects 
were not informed that there were bots in the game. We manipulated 
the noisiness of the bots as follows. In the ‘zero noise’ condition, the 
bots behaved with a simple, greedy strategy: when a bot had a chance 
to minimize colour conflicts with its neighbours, it chose that colour;  
otherwise, it maintained its current colour. In the other two  conditions, 
the bots behaved with the same greedy strategy most of the time, but 
they also randomly picked a colour from the three permissible options 
regardless of their local situation with either a probability of 10% (‘small 
noise’) or 30% (‘large noise’). In all of the conditions, the bots made 
decisions every 1.5 s, which was the typical human reaction time 
(Extended Data Fig. 1).

Independent of bot noise, we also manipulated their network 
 location as follows. In the ‘central’ condition, the bots were assigned 
to the three positions that had the largest number of neighbours (the 
highest network degree). Likewise, in the ‘peripheral’ condition,  
the bots were assigned to the three positions with the lowest degree. 
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In the ‘random’ condition, the bots were randomly assigned to their 
network locations. It was permissible for the bots to be connected to 
each other, by chance, in all conditions.

As noted, the bots acted using only their local information. To 
assess the effect of such bot behaviour compared to the much more 
 demanding case requiring global knowledge of the entire network 
structure and its solution space in advance, we also carried out 
 experiments with a ‘fixed colour’ condition. In this extra condition, 
we evaluated all colour combinations of each network that resulted 
in no conflicts, and then assigned the initial colours of three of the 
nodes based on one of those combinations (chosen at random). That is, 
 during the game, the three nodes were not controlled by bots that coor-
dinated with their neighbours, but rather, these nodes simply stayed at 
their initial colours, which were known to be consistent with a global 
solution to the problem. We examined this treatment only in the case 
in which the fixed nodes were in the central location.

In summary, we evaluated 11 conditions: 1 control condition not 
involving any bots; 9 treatment combinations of noise and location of 

bots (3 levels of behavioural randomness (0%, 10% and 30%) crossed 
with 3 types of location (random, central and peripheral)), and 1 final 
condition with 3 fixed-colour nodes. We conducted 30 sessions for the 
control condition and 20 sessions for each of the treatment conditions 
for a total of 230 sessions and 4,000 subjects.

For the games involving only human subjects, 20 out of 30 resulted 
in an optimal colouring of the network in less than the allotted 5 min 
(median time =  232.4 s; interquartile range (IQR) 143.7–300.0). 
Although the subjects aimed to eliminate all the conflicts, they often 
found themselves unable to reach the collective goal only by reducing 
their local conflicts on an individual basis. For example, as of 105 s in 
Fig. 1a (or Supplementary Video 1), each of the subjects had chosen 
one of the least common colours among their neighbours; that is, no 
one person could change their colour for the better. A conflict between 
neighbours, however, still remained. Such states in which players get 
caught in locally unresolvable conflicts are regarded as local minima of 
the cost function of the game (in contrast to resolvable conflicts that can 
be addressed by local action). Players would need a moderate level of 
deviancy from the norm of conflict minimization to overcome the local 
minimum and reach a global solution (for example, Fig. 1a, at 245 s).

By analysing the sessions involving only human subjects, it is possible 
to discern that games were more likely to be solved when some players 
occasionally chose a locally inappropriate colour, temporarily increas-
ing conflicts; moreover, the effect of such behavioural deviance varied 
according to the geodesic location of the players, as captured by their 
network degree (Fig. 1b). In addition, and distinctly, some networks 
could be intrinsically easier to solve (that is, the chromatic polynomial 
could be higher) (Fig. 1c).

To demonstrate how bots could improve the performance of human 
groups, Fig. 2 shows survival curves of the sessions involving the nine 
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Figure 1 | Results of sessions involving only human players. a, An 
example of the colour coordination game. The figures are snapshots with 
players’ node colour at 0, 105 and 245 s (see Supplementary Video 1 for full 
version). Red edges show that the connected players are the same colour 
(colour conflicts). Some conflicts can be resolved when either player 
selects the rarest colour among his/her neighbours (resolvable conflicts); 
but others cannot (unresolvable conflicts). b, The actual fraction of solved 
games depending on the behaviour of the most central or peripheral 
three players is shown (n =  30). The errant colour change rate is the ratio 
of colour selections (by the subjects) producing more colour conflicts 
divided by the opportunities to make such selections (see Supplementary 
Information for details). An intermediate level of errant colour choice 
among high-degree human players resulted in the greatest solvability 
(which comports with the programming strategy for helpful bots). c, The 
actual fraction of solved games in relation to the number of possible colour 
combinations (the ‘chromatic polynomial’) is shown (n =  30); having more 
possible solutions is associated with a higher solution rate.
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Figure 2 | Survival curves of sessions, by noisiness and location of bots. 
The curves show the percentage of sessions unsolved at a given time. 
Dark blue lines show results for the sessions including bots (n =  20), by 
their noise level (horizontal dimension) and geodesic location (vertical 
dimension). Light blue curves show results for the control sessions 
involving solely human players (n =  30). Total n =  210. Sessions are 
censored at 300 s; P values given by the log-rank test. Bots having 10% 
behavioural noise and located at the centre of the network cause a 
significant improvement in the solvability of the game (P =  0.015), and 
induce 55.6% acceleration in the median time to solution, from 232.4 s  
to 103.1 s.
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bot treatments. Before implementing  pairwise  comparisons of each 
treated group with the control group, we  performed a log-rank test of 
the null hypothesis that all the  survival curves are identical; that hypoth-
esis was rejected (P =  0.024), indicating that at least two of the survival 
curves differed. The  sessions having bots with 10% noise in central loca-
tions were the most likely to be solved within the allotted 5 min (17 out of  
20 sessions, or 85%, compared with 20 out of the 30 control sessions, 
or 67%, with humans alone); moreover, the solution was achieved  
more than 129.3 s faster (that is, 55.6% faster) than sessions  involving 
just humans (median time =  103.1 s (IQR 49.5–170.1) versus 232.4 s 
(IQR 143.7–300.0)), which was significantly better (P =  0.015,  
log-rank test).

We then examined the difference in effectiveness of the  various 
bot treatments, while furthermore controlling for the intrinsic 
 solvability of the network, using Cox proportional hazard models. Bot 
 behavioural randomness of 10%, central location, and the logarithm 
of the chromatic polynomial all have a significantly positive effect 
on the completion time (P <  0.05; n =  180 bot-treated sessions; see 
Supplementary Information). We also evaluated another metric of the 
complexity of the solution space (that is, mean convergence steps with 
linear  probabilities) and got similar results (Extended Data Fig. 2 and 
Supplementary Table 4). The statistical model with full interactions 
shows that the bots affect the solution time only when they behave 
with 10% randomness and are placed in the central location in the 
 network (Fig. 3a); moreover, when the network affords many  solutions, 
the  beneficial impact of bots decreases, as shown by the three-way 
interaction (Fig. 3b). In short, the bots are especially helpful when the 
network is globally hard to solve.

We found that the impact of 10%-noise bots was comparable to the 
impact of assigning three nodes with fixed (constant) colours in a con-
figuration known ex ante to be compatible with a global solution. There 
was no significant difference between the sessions with 10%-noise bots 
and the sessions with fixed colours (P =  0.675, log-rank test). Thus, 
the intervention of the bots, based on local decision-making alone, is 
equally as effective as a pre-calculated solution that (in typical circum-
stances) impractically would require previous global knowledge of the 
entire network structure and its solution space.

The bots appear to have improved collective performance in part 
by changing the colour-conflict behaviours of human players in the 
whole system (Extended Data Fig. 3). When placed at high-degree 
nodes, the bots with 0% behavioural randomness reduced the number 
of conflicts but they increased the duration of unresolvable conflicts; 
the bots with 30% randomness decreased the duration of unresolvable 
conflicts but increased overall conflicts; and only the bots with 10% 
randomness decreased both the number of conflicts and the duration of 
 unresolvable conflicts, compared with the control sessions. By contrast, 
when placed at low-degree nodes, the bots were less likely to influence 
the entire network of humans, regardless of their noisiness.

When the bots were placed in high-degree positions, their 
 behavioural randomness was able not only to facilitate the solution 
of their own conflicts, but also to nudge neighbouring humans to 
change their behaviour in ways that appear to have further facilitated 
a global  solution. The bots with 0% behavioural randomness reduced 
the  randomness of other human players (Fig. 4a), which made the 
human players, particularly the middle-degree players, come to be 
stuck in unresolvable conflicts (Fig. 4d). The bots with 30% behavioural 
 randomness destabilized the entire network, including the low-degree 
players, who displayed more noise in their own actions (Fig. 4c); as 
a result, the sessions with 30%-noise bots showed the same level of 
unresolvable conflicts as those without bots (Fig. 4f). The bots with 
10% behavioural randomness increased the randomness of the  central 
 players but reduced that of the peripheral players (Fig. 4b); hence, 
through the influence of their behavioural randomness, the 10%-noise 
bots reduced the unresolvable conflicts not only of themselves but also 
of the entire network, including links between human subjects uncon-
nected to the bots (Fig. 4e). These results were obtained even though 

the subjects were, in fact, less and less satisfied with their counterparts 
the more noisy the bots became (Extended Data Fig. 4).

In a separate, further experiment involving an additional 340  subjects 
and a matched set of n =  20 graphs, we found that these  beneficial 
effects on group coordination and learning were obtained even when 
players knew they were interacting with bots (see Supplementary 
Information). The solution time was statistically indistinguishable 
(Extended Data Fig. 5) and the effect on players throughout the system 
was also similar (Extended Data Fig. 6).

Adding autonomous agents with simple strategies into social  systems 
may make it easier for groups of humans to achieve global optima for 
complex group-wide tasks. Here, the setting was a global coordina-
tion game, but other settings might include cooperation, sharing or 
 navigation5,12,25. Any such bots, however, might only be helpful if they 
have certain properties, including noisiness or particular geodesic 
 locations. Indeed, like other situations13,14,17,18,20, some noise may be 

Figure 3 | Results of the survival analysis by bot and network 
characteristics. a, Hazard ratios for game solution time according to 
bot noise, bot location, number of solutions of the network (chromatic 
polynomial), and all interactions among these variables (n =  180; see 
Supplementary Table 3 for details). The results show that the benefit of 
bots varies with the solution space; when a network has few possible colour 
combinations, placing slightly noisy bots in a central location (high-degree 
nodes) facilitates resolution. ‘Ref.’ denotes the reference (or baseline) 
category for each variable. b, These network snapshots show initial and 
final states of illustrative sessions involving bots with 10% noise. Square 
nodes show the bots, and round nodes show human players; red edges 
show colour conflicts.
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good from the point of view of the group. Moreover, bots with some 
noise, with solely local information, improved global outcomes here 
just as much as bots using global information acquired in advance.

We find that these slightly noisy bots work not only by making the 
task of humans to whom they are connected easier, but also by  affecting 
the game play of the humans themselves when they interact with still 
other humans in the group, thus creating cascades of  benefit. And this 
happens even when people know they are interacting with bots. In this 
sense, even simple artificial intelligence (AI) agents can serve a  teaching 
function, changing the strategy of their human  counterparts and 
 modifying human–human interactions, and not just affecting human–
bot interactions. More generally, our work illustrates the  performance 
of combined, heterogeneous groups composed neither solely of humans 
nor solely of robots attempting to coordinate their actions. Future 
work can explore even more realistic or complex  interactions, such 
as  military or commercial robots working within human groups, or 
autonomous vehicles moving in a world of human-driven cars.

Although laboratory experiments afford robust causal inference, 
they must sacrifice some realism and breadth. Guided by prior  theory, 
we chose to focus on only two aspects of bot contributions (noise 
and placement) and their effect on one primary outcome (success of 
global coordination in a standard game10). We also necessarily made 
other design choices, including using a scale-free network limited to  
20 people (which was required if the games were to be tractable). 
But there are other features of social interactions that might affect 
the ability of groups to coordinate to solve a problem, such as group 
size,  network topology10, and bot fraction; whether the networks are 
dynamic or static26,27; or whether social institutions (for example, 

policing, sanctions or norms) are present. These elements are  important 
 directions for future work.

Adding bots of moderate noisiness to strategic positions within 
human networks might help to address diverse problems, especially 
when the particular coordination problem is hard. For example, nar-
rowly focused workers might each labour to enhance their own produc-
tivity, but this might actually decrease overall company performance. 
Crowd-sourcing applications in science (such as solving quantum prob-
lems28 or other types of ‘citizen science’ ranging from protein folding29 
to the assessment of archaeological or astronomical images) might be 
facilitated by adding some bots or noise to groups working collabo-
ratively. Moreover, our work reinforces the idea that both simple and 
sophisticated AI might be useful. For instance, simple bots might help 
to reduce racist remarks online30. The simplicity and transparency of 
decision-making in simple AI of the kind we explore here might also 
make it intelligible to humans, thereby eliciting an effective, long-term 
relationship11. Simple autonomous agents, when mixed into complex 
social systems, might offer substantial advantages, and they could help 
groups of humans to help themselves.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Figure 4 | Effect of bots on the behaviour of human players.  
a–c, Snapshots show estimates of the errant colour change rate (that is, 
humans choosing ‘wrong’ colours) in the same network with central bots, 
depending on bot noise. Square nodes show bots and round nodes show 
humans (see Supplementary Information and Supplementary Table 5 for 
regression modelling details). Note that the intermediate white colour 
shows the estimated errant rate of average human players in sessions 
without bots (0.041); thus, the red colour shows that human players behave 
in a more noisy way as a result of the influence of the bots; the blue colour 
shows the opposite. d–f, These graphs show the average accumulated time 
of unresolvable conflicts per link for each geodesic location of the players. 
Dark blue lines show results for sessions with central bots (whose degree 
was typically ≥  6), by their noise level, and light blue lines show results for 
the control sessions with only humans. Bots with 10% noise (e) change the 
behaviours of the human players in the whole system for the better. Error 
bars denote s.e.m.
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METHODS
A total of 4,000 unique subjects (plus a further 340 for the secondary experiment 
regarding bot visibility; see Supplementary Information) participated in our incen-
tivized economic game experiments. They were recruited using Amazon Mechanical 
Turk (AMT; see Supplementary Information), and they interacted anonymously 
over the Internet using customized software playable in a browser window (available 
at http://breadboard.yale.edu). While keeping other initial  conditions the same, 
we completed 30 sessions for the only-human condition  (control) and 20 sessions 
for each bot-treated condition (treatment). In each  session (after passing various 
tutorials), the subjects were paid a US$2 show-up fee and a declining bonus of up 
to US$3 depending on the speed of reaching a global solution to the coordination 
problem (in which every player in a group had chosen a different colour from their 
connected neighbours). When they did not reach a global solution within 5 min, 
the game was stopped and the subjects earned no bonus.

Except for the control group sessions, the networks had 3 bots in addition to  
17 human subjects. These bots were assigned to three geodesic locations  (peripheral, 
central, or random locations). The bots were controlled programmatically with a sim-
ple, greedy algorithm incorporating a random element; we drew a random number 
from a uniform distribution between 0.0 and 1.0; if the random number was less than 
a preset threshold (‘behavioural noise’), the bot picked a colour among the three colour 
options at random; otherwise, it behaved based on the colours of its neighbours—
that is, if the bot’s current colour was not the least common among its neighbours, 
it changed to the least common colour; otherwise, it maintained the current colour.

To evaluate the difference in effectiveness between the various bot treatments, 
we analysed the solution time of the n =  180 sessions using Cox proportional 

hazard models. The sessions that were not solved within 300 s were regarded as 
censored. Each network session had a distinct level of complexity with respect to 
finding a colouring solution because it was generated de novo; thus, we  controlled 
for the number of possible colour combinations of the network (the chromatic 
polynomial). We also performed various statistical robustness checks (see 
Supplementary Information).

We examined the impact of bots’ behavioural noise on the humans’ behaviour 
using a generalized linear mixed model (GLMM) involving logistic regression (see 
Supplementary Information). The dependent variable is the errant colour-change 
rate evinced by the human players (that is, choices that deviated from the simple, 
greedy strategy to minimize local conflicts). The model incorporated fixed effects 
for the behavioural noise of bots, the number of neighbours, the number of neigh-
bouring bots, the session length, and random effects for session. We predetermined 
sample size so as to be able to evaluate at least a 30% difference in game solvability, 
based on two-sample tests for equality of proportions. The investigators were not 
blinded to allocation during analysis.

This research was approved by the Yale University Committee of the Use of 
Human Subjects. All the subjects were informed about the use of their behavioural 
data for research purposes upon enrolment in the experiment and consented. We 
verified colour perception and understanding of the game rules in all the subjects 
using five multiple-choice questions; we excluded applicants who failed to select the 
correct answer in any of these questions. 
Data availability. The data reported in this paper are archived at Yale Institute for 
Network Science and are available upon request.
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Extended Data Figure 1 | Histogram of the response time of humans 
in the colour-matching test (n = 142). In the colour-matching test in our 
preliminary experiments, subjects were asked three times to click the same 
colour button as a picture on the screen with five options: green, orange, 

purple, pink and yellow. This histogram shows the response time (from 
when a colour in question showed up on screen to when a subject clicked a 
button) for 142 pilot subjects. Most subjects clicked the correct button in  
1.0–2.0 s (median time =  1.59 s).
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Extended Data Figure 2 | Relationship between different measures 
of the structure-based complexity of the graph colouring sessions. 
The correlation coefficient after logarithmic transformation is − 0.990 
(P <  0.001; n =  230). The solution set (x axis), known as the chromatic 
polynomial, is the number of possible colour combinations that satisfy 
the task of colouring the network. The average number of steps to reach 
a solution (y axis) involves computing the following statistic: a node is 
randomly selected and changes its colour to one that is different from its 
random neighbour and this is repeated until a solution is reached; the 
number of steps is then measured. This linear probability algorithm offers 
the advantage of allowing us to evaluate the landscape of the solution 
space starting from an arbitrary initial value. The mean convergence steps 
statistic was calculated for 100 iterations of each experimental network 
given the same initial colouring.
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Extended Data Figure 3 | Impact of bots on colour conflicts over the 
entire network. The error bars are s.e.m. (n =  30 for the no-bots sessions; 
n =  20 for all the bot-treated sessions). When placed in the centre, bots 
with 0% behavioural noise reduce the number of conflicts but increase 
the duration of unresolvable conflicts; bots with 30% noise decrease 
the duration of unresolvable conflicts but increase the overall conflicts; 

and bots with 10% noise decrease both the number of conflicts and the 
duration of unresolvable conflicts, compared with results of only human 
players. In contrast to central placement, when bots are placed in the 
periphery, conflict status does not vary with behavioural noise (data points 
are overlapping).
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Extended Data Figure 4 | Effect of bots’ behavioural noise on players’ 
satisfaction with their neighbours. After each session was completed, 
subjects rated their satisfaction with the actions of their neighbours on 
a five-point scale: very satisfied, satisfied, neither, dissatisfied, and very 
dissatisfied (the specific question asked was: “How satisfied were you 

with the actions of your neighbours you were connected with?”). These 
coefficients show the effect of number of bots among neighbours on 
subjects’ satisfaction with their neighbours, estimated by a proportional 
odds logistic regression, incorporating number of neighbours and whether 
the session was solved. The error bars are s.e.m. (n =  3,035).
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Extended Data Figure 5 | Survival curves for sessions by bot visibility. 
The curves show the percentage of sessions unsolved at a given time. Dark 
blue lines show the n =  20 sessions (involving n =  340 additional subjects) 
where human players were informed of which nodes were played by bots 
(visible-bots condition; n =  20), and light blue lines show the sessions 
where humans were not informed (invisible-bots condition; n =  20). The 
difference of the survival curves is not statistically significant (P =  0.435, 
log-rank test).
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Extended Data Figure 6 | Effect of bot visibility on players’ unresolvable 
conflicts for each geodesic location. The dark purple line shows results 
for the sessions where human players were informed of which nodes were 
played by the bots (visible-bots condition; n =  20), the dark blue line shows 
results from the sessions where humans were not informed (invisible-bots 
condition; n =  20). In both conditions, the bots were located at high-degree 
nodes with 10% noise. The light blue line shows results for the sessions 
with all human players as a control (n =  30). The error bars are s.e.m. 
by session. Except for the addition of the dark purple line (the results of 
the visible-bots condition), this figure is the same as Fig. 4e. Pertinently, 
the dark purple and dark blue lines are not statistically distinguishable, 
suggesting that making the bots visible has a similar effect throughout the 
network on players’ behaviour compared to keeping them invisible.
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