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Methods 

1. Experiment setting

1.1 Recruitment procedure 

A total of 4,000 unique subjects (plus a further 340 for the secondary experiment regarding 
bot visibility, described below) participated in our incentivized economic game experiments. 
Subjects were recruited using Amazon Mechanical Turk (AMT)1-6. AMT is an online labor 
market in which employers contract with workers to complete short tasks for relatively small 
amounts of money. Workers often receive a baseline payment, plus an additional bonus 
depending on their performance. Thus, incentivized experiments are easy to conduct using 
AMT: the baseline payment corresponds to the traditional show-up fee, and the bonus 
payment, here, is determined by the solution time during the experimental session.  

Issues exist when running experiments online that do not arise in the traditional laboratory. 
For example, running experiments online naturally implies some loss of control, since the 
workers cannot be directly monitored as in the traditional lab; experimenters cannot be certain 
that each observation is the result of a single person (as opposed to multiple people making 
joint decisions at the same computer), or that one person does not participate multiple times 
(although AMT goes to great lengths to try to prevent this, and, based on IP address 
monitoring, it seems to happen very infrequently); and the sample of subjects in AMT 
experiments is restricted to people who participate in online labor markets (although most 
physical lab studies are restricted to college undergraduates, who are also far from 
representative). A number of studies have demonstrated the validity of behavioral experiment 
data gathered using AMT.5 It has also been shown that AMT subjects are as attentive as 
undergraduates3, as consistent in their answers to a range of survey questions2, and 
significantly more nationally representative6; and that a range of classic psychological 
manipulations and biases are apparent among AMT subjects1,6. 

1.2 Experimental setup 

Our participants interacted anonymously over the Internet using customized software playable 
in a browser window (available at http://breadboard.yale.edu).  We prohibited subjects from 
participating in more than one session of the experiment by using unique identifications for 
each subject on AMT. The experiments were conducted from March to August 2015 and from 
September to October 2016. To clearly observe the effects of different behaviors and geodesic 
locations of the autonomous agents (“bots”) while keeping other initial conditions the same, 
we completed 30 sessions for the only-human condition (control) and 20 sessions for each 
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bot-treated condition (treatment). Each session lasted no longer than thirty minutes. In each 
session, the subjects were paid a $2 show-up fee and a declining bonus of up to $3 depending 
on speed to a global solution in which every player in a group had chosen a different color 
than their connected neighbors. When they did not reach a global solution within five 
minutes, the game was stopped and the subjects earned no bonus. This research was approved 
by the Yale University Committee of the Use of Human Subjects. 

At the start, subjects were required to pass color-matching tests. They were asked to click the 
same color button as a picture on the screen with five options: green, orange, purple, pink, and 
yellow (these colors were selected from http://colorbrewer2.org in order to be colorblind-safe, 
and the first three colors were used in the real game). If the subjects failed to select the correct 
color in three trials, they were dropped from the game. 

After passing the color-matching tests, each subject was asked to take a tutorial before the 
actual game would begin. In the tutorial, each subject separately interacted with three dummy 
players in a one-minute practice game. After the practice game, subjects were assessed for 
their comprehension of the game rules and payment structure using three multiple-choice 
questions each with two options. If they failed to select the correct answer in any of the 
questions, they were dropped from the game. At 690 seconds after the tutorial beginning, a 
“Ready” button became visible simultaneously to all the subjects who completed the tutorial 
and passed the comprehension tests. The real games started 30 seconds after the “Ready” 
button showed up. If subjects did not click the button before the game started, they were 
dropped. The game required an exact number of subjects (20 for only-human sessions and 17 
for bots-treated sessions). When the subjects who successfully clicked the button were more 
than the required number, surplus subjects, who were randomly selected, were dropped from 
the game. When the number of qualified subjects was less than the required number, the game 
did not start. 

Each session lasted for a maximum of five minutes. If the players reached a global solution 
within five minutes, the session was finished at that point. After the game, each subject was 
asked about his or her satisfaction with behaviors of him- or herself, their neighbors, and 
unseen others with a five-level rating system (very satisfied, satisfied, neither, dissatisfied, 
and very dissatisfied). The exact questions asked were: “How satisfied were you with your 
actions?” “How satisfied were you with the actions of your neighbors you were connected 
with?” and “How satisfied were you with the actions of other players you could not see?” 

Except for the control group sessions, the networks had 3 bots in addition to 17 human 
subjects. These bots were allocated to node positions based on a pre-set network degree 
preference (“location”). In the game, they were controlled programmatically with a simple, 
greedy algorithm incorporating a random element; we drew a random number from a uniform 
distribution between 0.0 and 1.0; if the random number was less than a preset threshold 
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(“behavioral noise”), the bot picked a color among the three color options at random; 
otherwise, it behaved based on the colors of its neighbors; if the bot’s current color was not 
the least common among its neighbors, it changed to the least common color; otherwise, it 
maintained the current color. Subjects were not informed that they were playing with bots 
(except for the additional treatment of making bots visible – see Section 2.4). 

1.3 Instructions / Tutorial 

Below are screenshots for the initial description of the tutorial and the confirmation tests.  We 
also show some sample screenshots of the real game.  
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2. Statistical analysis

All analyses were performed using R version 3.1.2. 

2.1 Analysis of game solvability with autonomous agents 

Given the multiple comparisons here, before performing pairwise comparisons of the treated 
groups with the control group (as shown in Fig. 2), we performed a log-rank test of the null
hypothesis that all the survival curves are identical; that hypothesis was rejected (P = 0.024), 
indicating that at least two of the survival curves are different from each other.  We confirmed 
the robustness of this analysis using other statistical tests (other than the aforementioned log-
rank test), including a Cox regression model incorporating the intrinsic difficulty of network 
structure (the logarithm of number of solutions sets – the chromatic polynomial of the graph) 
(Table S2). 

Then, we implemented similar statistical tests (Table S2) and show a significant pairwise 
improvement, compared to control, only for the sessions having bots with 10% noise and 
central locations, compared to the sessions having only humans (Fig. 2).  

To evaluate the difference in effectiveness between the various bot treatments, we analyzed 
the solution time of the sessions using Cox proportional hazard models (Table S3). The 
sessions that were not solved within 300 seconds were regarded as censored. Note that each 
network session has a distinct level of complexity with respect to finding a coloring solution 
because it is generated de novo; some networks turn out to be much easier to color than others. 
Thus, we controlled for the number of possible color combinations of the network (known as 
the “solution set” or “chromatic polynomial” in graph coloring) in the statistical analysis. 
Table S3 shows that the bots affect the solution time only when they behave with 10% 
randomness and are placed in the central location in the network; moreover, when the network 
structure affords many solutions, the beneficial impact of bots decreases (Fig. 3). 

We used mean convergence steps with linear probabilities as another measure of the 
complexity of solution space (in addition to the number of possible color combinations). The 
linear probability algorithm is to repeat the following sequence until it finds a global solution: 
a node is randomly selected and changes its color to one that is different from its random 
neighbor. This algorithm offers the advantage of allowing us to evaluate the landscape of the 
solution space starting from an arbitrary initial value. We calculated the mean convergence 
steps for 100 iterations of each experimental network with its initial colorings. As expected, 
we found a strong negative correlation between the logarithm of the solution set and the 
logarithm of mean convergence steps (correlated coefficient = -0.990; n=180)(Extended 
Data Fig. 2) and got similar results from the survival analysis (Table S4).  
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To assess the effect of the bots intervention, we compared the bots-treated sessions with those 
having three nodes with fixed (constant) colors in a configuration known in advance to be 
compatible with global solution (Table S1). There was no significant difference between the 
sessions with 10%-noise bots and the sessions with fixed colors (P = 0.675, log-rank test). We 
note that specifying a solvable set of nodes with fixed colors requires prior, global knowledge 
of the entire network structure and its solution space. For example, in simulations, if the three 
colors are randomly assigned in such preferential attachment networks, the network is 
unsolvable 62% of the time, so the foregoing comparison is actually conservative. Thus, the 
bots intervention, based on local decision-making alone, is equally as effective as a pre-
calculated solution that (in typical circumstances) impractically would impose the heavy 
information requirement of prior global knowledge. 

2.2 Analysis of errant behaviors in human subjects

We examined the impact of bots’ behavioral noise on behaviors in human subjects using a 
statistical approach based on a generalized linear mixed model (GLMM) involving logistic 
regression (Table S5A). The dependent variable is the errant color-change rate evinced by the 
human players (i.e., choices that deviate from the simple, greedy strategy to minimize local 
conflicts). The model incorporated fixed effects for the behavioral noise of bots, the number 
of neighbors, the number of neighboring bots, the session length, and random effects for 
session. Figures 4a-c show estimates of errant color-change rates on the same network 
depending on bot’s noise, using the coefficients in Table S5A with the average session length 
(=189.5 seconds).   

As a reference for the bots-treated sessions, we estimated the effects of the number of 
neighbors and the session length on behaviors in the only-humans sessions, based on GLMM 
involving logistic regression (Table S5B). Table S5B shows that both of these independent 
variables are not statistically significant in only-human sessions. Using the estimated 
coefficients in Table S5B, we calculated the average errant rate in only-human sessions (= 
0.041) with the average session length and average number of neighbors (=3.7).  

As the dependent variable in the statistical analysis, we calculated the errant color-change rate 
(that is, color choices that seem to be sub-optimal locally) as the ratio of color selections 
producing more color conflicts divided by the number of opportunities to make such choices. 
The number of opportunities for the errant color selections was in turn obtained by dividing 
the accumulated time of locally optimized states (where the player has chosen a color to 
minimize local conflicts) by the player’s decision-making cycle.  

We approximated the players’ decision-making time to be roughly 1.5 seconds, based on the 
behaviors of human subjects in the color matching tests in our preliminary experiments. We 
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measured time from when a color in question showed up on screen until when a subject 
clicked a button. Extended Data Fig. 1 shows the histogram of the response time of 142 
subjects. Because most subjects clicked the correct button in 1.0 to 2.0 seconds, we used 1.5 
seconds for the standard decision-making time not only in the estimation of player’s errant 
color-change rate but also in the bot programming. 

2.3 Analysis of satisfaction in human subjects 

After each session was completed, subjects rated their satisfaction with the actions of their 
neighbors on a five-point scale: very satisfied, satisfied, neither, dissatisfied, and very 
dissatisfied (the specific question asked was: “How satisfied were you with the actions of 
your neighbors you were connected with?”). We analyzed the satisfaction level according to 
bots’ behavioral noise and number of bots among a subject’s neighbors while controlling for 
the number of neighbors and whether the game was solved, using a proportional odds logistic 
regression model. Extended Data Fig. 4 shows the coefficients for the number of bots among 
neighbors, according to bots’ behavioral noise. According to Extended Data Fig. 4, noisier 
bots are less likely to satisfy their neighbors. Although 10%-noise bots were the most likely to 
lead to a global solution, human subjects actually preferred to interact with 0%-noise bots. 
Behavioral noise in bots or individuals can improve collective performance of the entire social 
network, even though, at the same time, it might reduce the satisfaction of people around 
them. 

2.4 Analysis of game solvability with visibility of autonomous agents 

To further explore the beneficial effect of low levels of noise, we conducted a separate 
experiment involving a further 340 subjects (in addition to the 4,000 subjects in the core 
experiments), and examined the impact of making the bots visible. In addition to the basic 
setting used before (the bots in the “invisible” condition), the human players were informed 
that they were interacting with bots and which nodes were played by bots, by labeling the 
relevant nodes “B” in their local network diagram. Hence, in the visible condition, before the 
session began, the human players knew both the existence and the identity of bots in their 
local neighbors. That is, they could make a decision with knowledge that they had both bot 
neighbors and human neighbors, but they were not informed of how exactly the bots would 
behave (i.e., just as in the core experiments).  

We tested the visible bots condition only with the bots having 10% noise and high degree, 
which we had established had a beneficial effect on group coordination in the invisible-bots 
condition (Fig. 2 and 3).  We used the same exact network sets (i.e. the same randomly 
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generated topology) as the sessions of invisible bots having 10% noise and high degree 
(n=20), and did pairwise statistical tests. 

We find that making bots identifiable may slow the game solution, compared to identical 
circumstances where bots are not identified (Extended Data Fig. 5; mean time = 153.4 
seconds for bots-visible sessions versus 103.1 seconds for the invisible-bots sessions). The 
difference, however, is not statistically significant (P = 0.435, log-rank test; P = 0.507, 
Wilcoxon signed-rank test, with paired data).  

The human players had variable responses to having bots in their network neighborhood.  One 
left a comment saying “I tried to work with the non-bots more so since I suspected that the 
bots knew what they were somewhat doing.” But another player seemed to have a different 
idea regarding the bots, saying, “At first I just tried to stay a different color, but then I realized 
I needed to continuously change it so the bots would be able to find a color that would satisfy 
conflicts between their other neighbors.”  

Likewise, we find no significant difference in the accumulated time of unresolvable conflicts 
for each geodesic location in which the bots were placed (Extended Data Fig. 6). Therefore, 
the results show that, even when the bots’ identity is revealed to human players, the bots have 
the same effect in this experimental setting (with bots placed in the center, with low levels of 
noise). 
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Table S1. Full experimental results. Solved sessions are sessions whose solution time is within 
300.0 seconds.

Treatment 
Only 

humans 
(control) 

Random-
zero 
noise 

Random-
small 
noise 

Random-
large 
noise 

Central-
zero 
noise 

Central-
small 
noise 

Central-
large 
noise 

Peripheral-
zero  
noise 

Peripheral-
small 
noise 

Peripheral-
large  
noise 

Cenral-
fixed 
color 

Bots 
location - Random Random Random High 

degree 
High 

degree 
High 

degree 
Low  

degree 
Low 

degree 
Low 

degree 
High 

degree 
Bots noise - 0% 10% 30% 0% 10% 30% 0% 10% 30% - 
# humans 20 17 17 17 17 17 17 17 17 17 17 

# bots 0 3 3 3 3 3 3 3 3 3 3 
# sessions 30 20 20 20 20 20 20 20 20 20 20 
# solved 
sessions 20 9 11 10 12 17 10 10 13 14 18 

% solved 
sessions 0.667 0.450 0.550 0.500 0.600 0.850 0.500 0.500 0.650 0.700 0.900 

So
lu

tio
n 

tim
e 

(s
) 

M
ed

ia
n 

232.4 300.0 269.1 297.3 170.6 103.1 298.1 267.2 159.3 70.6 133.1 

Q
1 143.7 130.3 104.5 145.1 76.4 49.5 133.2 79.8 82.5 33.7 85.2 

Q
3 300.0 300.0 300.0 300.0 300.0 170.1 300.0 300.0 300.0 300.0 240.5 

A
ct

ua
l d

at
a 

8.9 24.9 14.9 32.9 9.1 10.8 35.5 11.2 27.1 20.8 13.1 
33.6 30.7 16.5 43.3 10.4 20.9 35.6 34.6 29.6 24.0 39.9 
35.1 37.2 27.4 60.7 16.9 23.8 46.9 40.3 53.5 33.0 53.0 
41.7 67.3 58.1 64.6 34.0 30.9 48.7 45.1 54.9 33.1 68.0 
83.7 129.2 74.1 89.9 69.7 40.4 60.4 72.0 71.0 33.2 73.3 

116.3 130.6 114.6 163.5 78.7 52.5 157.5 82.4 86.3 33.8 89.2 
129.5 139.1 128.0 173.0 99.4 58.5 175.0 125.1 90.1 36.0 95.6 
141.3 228.7 201.9 179.2 102.0 70.5 216.9 148.7 97.6 50.6 99.6 
150.9 255.8 255.1 181.9 110.5 78.0 225.7 156.0 103.1 62.3 116.3 
151.9 300.0 268.5 294.6 169.4 92.5 296.2 234.5 136.5 68.9 127.8 
158.5 300.0 269.8 300.0 171.9 113.8 300.0 300.0 182.2 72.3 138.4 
186.4 300.0 300.0 300.0 187.1 120.4 300.0 300.0 194.3 87.1 163.6 
222.6 300.0 300.0 300.0 300.0 126.4 300.0 300.0 220.6 243.4 189.4 
228.5 300.0 300.0 300.0 300.0 141.0 300.0 300.0 300.0 279.7 235.3 
231.2 300.0 300.0 300.0 300.0 147.4 300.0 300.0 300.0 300.0 238.4 
233.6 300.0 300.0 300.0 300.0 238.1 300.0 300.0 300.0 300.0 246.7 
246.1 300.0 300.0 300.0 300.0 272.7 300.0 300.0 300.0 300.0 254.1 
250.9 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 261.3 
273.3 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 
288.9 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 
300.0 
300.0 
300.0 
300.0 
300.0 
300.0 
300.0 
300.0 
300.0 
300.0 
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Table S2. The results of various statistical tests regarding the survival curve comparisons. Bold 
fonts show significant coefficients at the 5% level. “Comprehensive test” here refers a test of the null 
hypothesis that all the survival curves are identical; that hypothesis was rejected regardless of 
statistical test used (top row), indicating that at least two of the survival curves are different from each 
other. 

Log-rank 
test 

Wilcoxon 
test 

Cox 
regression 

Cox 
regression w\ 
control. Log 
(#solution 

sets) 

Parametric 
(Weibull) 

p-value with comprehensive test 0.024 0.041 0.044 < 0.001 0.026 
p-value with pairwise test

Control Random-noise0% 0.257 0.460 0.282 0.654 0.270 
Control Random-noise10% 0.560 0.791 0.627 0.663 0.610 
Control Random-noise30% 0.362 0.515 0.408 0.983 0.405 
Control Center-noise0% 0.827 0.433 0.845 0.331 0.833 
Control Center-noise10% 0.015 0.006 0.031 0.005 0.024 
Control Center-noise30% 0.350 0.489 0.414 0.808 0.398 
Control Periphery-noise0% 0.517 0.869 0.540 0.866 0.534 
Control Periphery-noise10% 0.579 0.313 0.675 0.192 0.646 
Control Periphery-noise30% 0.285 0.079 0.230 0.099 0.231 
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Table S3. The results of statistical analysis regarding solution time, by bot treatment and 
solution set of network (chromatic polynomial), estimated by Cox proportional hazard models 
(n=180). Bold fonts show significant coefficients and hazard ratios (exponentiated values of the 
coefficients) at the 5% level. 

A. No interaction model
Variable Coef. Exp(Coef.) 95%CI p-value

Bot's noise 0% - - - Ref. 

10% 0.545 1.725 (1.076-2.766) 0.024 

30% 0.124 1.132 (0.694-1.849) 0.619 

Bot's location Random - - - Ref. 

Center 0.392 1.479 (0.916-2.390) 0.109 

Periphery 0.252 1.286 (0.790-2.094) 0.312 

Network Solution set* 0.582 1.789 (1.485-2.157) < 0.001 

B. Full interaction model
Variable Coef. Exp(Coef.) 95%CI p-value

Bot's noise 0% - - - Ref. 

10% -3.262 0.038 (0.001-1.540) 0.084 

30% 1.190 3.289 (0.073-148.9) 0.541 

Bot's location Random - - - Ref. 

Center -3.790 0.023 (0.000-1.803) 0.090 

Periphery -2.144 0.117 (0.003-4.647) 0.254 

Network Solution set* 0.269 1.308 (0.784-2.183) 0.305 

Interaction 10% : Center 6.969 1063 (3.150-359000) 0.019 

30% : Center 0.038 1.039 (0.002-670.3) 0.991 

10% : Periphery 4.586 98.09 (0.513-18770) 0.087 

30% : Periphery 0.794 2.213 (0.012-400.3) 0.765 

10% : Solution set* 0.794 2.211 (1.028-4.757) 0.042 

30% : Solution set* -0.253 0.777 (0.319-1.888) 0.577 

Center : Solution set* 0.943 2.567 (1.032-6.388) 0.043 

Periphery : Solution set* 0.450 1.569 (0.762-3.272) 0.221 

10% : Center : Solution set* -1.476 0.229 (0.069-0.762) 0.016 

30% : Center : Solution set* -0.133 0.876 (0.221-3.476) 0.850 

10% : Periphery : Solution set* -0.922 0.398 (0.138-1.143) 0.087 

30% : Periphery : Solution set* -0.002 0.998 (0.331-3.008) 0.997 

* Logarithmic value

WWW.NATURE.COM/ NATURE | 21

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature



Table S4. The results of statistical analysis regarding solution time, by bot treatment and mean 
convergence steps with linear probabilities, estimated by Cox proportional hazard models 
(n=180). Bold fonts show significant coefficients and hazard ratios (exponentiated values of the 
coefficients) at the 5% level. Note that the sign of coefficients in the full interaction model comes out 
the opposite of Table S2 because mean convergence steps, in contrast to solution set, has a negative 
impact on game solvability. 

A. No interaction model
Variable Coef. Exp(Coef.) 95%CI p-value

Bot's noise 0% - - - Ref. 

10% 0.566 1.762 (1.098-2.828) 0.019 

30% 0.140 1.150 (0.704-1.879) 0.577 

Bot's location Random - - - Ref. 

Center 0.397 1.487 (0.921-2.401) 0.105 

Periphery 0.236 1.266 (0.777-2.063) 0.343 

Network Convergence steps* -0.643 0.526 (0.432-0.640) < 0.001 

B. Full interaction model
Variable Coef. Exp(Coef.) 95%CI p-value

Bot's noise 0% - - - Ref. 

10% 11.790 1.32E+05 (1.93E+00 - 9.07E+09) 0.038 

30% -1.670 1.88E-01 (3.84E-07 - 9.22E+04) 0.803 

Bot's location Random - - - Ref. 

Center 13.380 6.47E+05 (2.11E+00 - 1.98E+11) 0.038 

Periphery 6.352 5.73E+02 (1.76E-02 - 1.87E+07) 0.231 

Network Convergence steps* -0.286 7.51E-01 (4.30E-01 - 1.31E+00) 0.315 

Interaction 10% : Center 
-

20.250 1.60E-09 (6.76E-17 - 3.79E-02) 0.019 

30% : Center -1.853 1.57E-01 (3.47E-10 - 7.09E+07) 0.855 

10% : Periphery 
-

12.390 4.18E-06 (1.21E-12 - 1.44E+01) 0.107 

30% : Periphery -0.593 5.53E-01 (7.13E-08 - 4.29E+06) 0.942 

10% : Convergence steps* -0.837 4.33E-01 (1.90E-01 - 9.85E-01) 0.046 

30% : Convergence steps* 0.131 1.14E+00 (4.46E-01 - 2.92E+00) 0.785 

Center : Convergence steps* -0.940 3.91E-01 (1.54E-01 - 9.93E-01) 0.048 

Periphery : Convergence steps* -0.475 6.22E-01 (2.85E-01 - 1.36E+00) 0.233 

10% : Center : Convergence steps* 1.498 4.47E+00 (1.27E+00 - 1.57E+01) 0.020 

30% : Center : Convergence steps* 0.083 1.09E+00 (2.50E-01 - 4.71E+00) 0.912 

10% : Periphery : Convergence steps* 0.938 2.56E+00 (8.30E-01 - 7.86E+00) 0.102 

30% : Periphery : Convergence steps* 0.098 1.10E+00 (3.44E-01 - 3.54E+00) 0.869 

* Logarithmic value
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Table S5. The results of the statistical analysis regarding the errant color change rate of human 
subjects, by noise level of bot behavior, number of bots in neighbors, number of neighbors, 
and session length, estimated by GLMM with a logistic regression, incorporating random 
effects for session.  

A. Human subjects in bot-treated sessions (n=3,060)
Variable Coef. Std. Error p-value

Intercept -3.362 0.095 < 0.001 
Bot's noise 0% - - Ref. 

10% -0.014 0.094 0.879 
30% 0.337 0.093 < 0.001 

#Neighboring bots -0.018 0.024 0.443 
#Neighbors 0.100 0.007 < 0.001 
10% : # Neighboring bots 0.203 0.035 < 0.001 
30% : # Neighboring bots 0.148 0.034 < 0.001 
10% : #Neighbors  -0.017 0.010 0.081 
30% : #Neighbors -0.067 0.010 < 0.001 
Session length  -0.001 0.000 < 0.001 

B. Human subjects in only-human sessions (n=600)
Variable Coef. Std. Error p-value

Intercept -3.122 0.207 < 0.001 
#Neighbors 0.002 0.007 0.767 

Session length 0.000 0.001 0.846 
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3. Video for network dynamics illustration

To illustrate the dynamics of social coordination on the networked coloring game, we created 
a video file of a selected session (Video. S1). 

- Please refer to the separately submitted video file -

Video Legend 

Video, S1. An example of the color coordination game with all human subjects. Each node’s 
color shows the color choice made by assigned human subjects at the time. Wide red edges 
show that the connected players are in the same color (“color conflicts”). Figure 1a shows the structure 
snapshots of the session.

4. Code and data availability
The programming codes as well as the experimental data are stored and available upon
request at Yale Institute for Network Science Data Archive.
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