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Methods 
 
1. Experiment setting 
 
There is a large design space for social experiments, including with respect to inequality, and, by 
necessity, we explore only a part of this space. We chose to focus on wealth visibility and initial 
wealth inequality and their impact on diverse social welfare outcomes in a public goods game 
setting, as the public goods game has become a standard paradigm for social interaction across 
fields. We also chose to explore wealth visibility in a setting of dynamic social network interactions 
wherein individuals could re-wire their connections. We implemented this feature primarily because, 
in our view, social capital (as captured by the density of social connections) is a key social welfare 
outcome of interest here, one that can co-evolve with cooperation and wealth inequality, as we 
show. 
 
1.1. Participants recruitment  
 
Subjects were recruited using Amazon Mechanical Turk (AMT) (shown below)1,2. They interacted 
anonymously in a virtual laboratory setting we created using bespoke software (a beta version of 
which, called “Breadboard,” will soon be made publicly available)3,4. Subjects were not allowed to 
participate in more than one session of our experiments (the participants who participated in any 
parts of our experiments previously were temporarily “blacklisted” and no longer permitted to 
participate in future sessions of the same experiment). These online experiments were approved by 
the Yale University Human Subjects Committee.   
 

 
 
Screenshot for participant recruitment. We used Amazon Mechanical Turk (AMT) to recruit subjects from 
internet users from all over the world.  
 
All 80 sessions were carried out between October and December 2013. The typical number of 
sessions that we implemented per day was 2 to 4. Each session lasted for a total of approximately 60 
minutes (of which 30 minutes (SD = 7.13) was taken up in actual game play). At the end of each 
session, the subjects were paid a $3 show-up fee; each subject’s final units, summed over all rounds, 
were converted into dollars at the exchange rate of 1 USD ($1) = 1,000 units. Overall, subjects 
typically earned approximately $6 (interquartile range [IQR]: $4.95 to $12.05) for their one-hour 
participation.    

In each session, we aimed to recruit 13 – 25 subjects who could participate in the entire session, 
which included two training rounds and then ten actual rounds. Since we anticipated that some 
subjects might drop out during the training, we recruited 16 – 28 subjects (three more than the target 
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range) at the beginning of each session and implemented the session regardless of the total number 
of the subjects participating if it was 16 or more. When the number of subjects who showed up 
reached 23 or the recruiting time period (up to 15 minutes) expired, we moved to the next steps: the 
explanation of the rules of the experiment (cooperation or defection, making a new connection or 
not, breaking an existing connection or not, etc.), and then the two training rounds. When the 
number of the subjects who showed up did not reach 16, the attempted session (practice rounds and 
actual rounds) was canceled, but the show-up fee was paid to the subjects. 

1.2. Instruction (tutorial) 

Before the practice rounds, we explained the experiments to the subjects. The exact sentences are 
shown below. Instructions in the practice rounds and in the actual rounds are shown in the 
screenshots (shown below). 
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p 

q 

Screenshots of the tutorial (a – q). We show the screenshots of the visible condition. In the case of the 
invisible condition, the score (wealth) of the connecting neighbors is not shown in the tutorial (or later). 

1.3. Practice rounds  

The two training rounds were performed with the same conditions as the experiment (shown below). 
The interactions were repeated for two rounds. The setting for the training rounds was the same for 
all the sessions: (r, p, f, v) = (500, 500, 0.5, 0 or 1) (where r represents the amount of initial wealth 
among subjects in the “rich” group, p represents the amount of initial wealth among subjects in the 
“poor” group, f represents the fraction of the subjects in the rich group out of the entire subject 
sample, and v represents the condition of visibility of connected neighbors’ wealth information 
where 1 is “visible” and 0 is “invisible”). We used the same visibility condition as the actual 
experiment the subject would experience, and subjects interacted with pre-programmed artificial 
intelligence players. The amount of wealth accumulated by the subjects at the end of the training 
rounds was not taken over into the actual rounds; wealth was re-set, according to the experimental 
design, at the start of the actual experiment. When the number of subjects finishing the training 
rounds did not reach at least 13, the attempted session was canceled.  
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a 

b 

Screenshots of practice rounds. a, A focal subject (the larger circle in the center) is asked to choose to 
cooperate (“A [-150]”) or to defect (“B [0]”). Since the focal subject is connected with three neighbors (the 
three smaller circles at the periphery), the focal subject needs to pay 50 × 3 = 150 units when the focal 
subject chooses “A” (to cooperate with connecting neighbors). All the circles are colored grey here because 
they have no record regarding their behavior in the prior move (this example is the first round). b, A focal 
subject and one of the connecting neighbors choose to cooperate, which results in –50 units for the focal 
subject. The change in the present units of the focal subject and the connecting neighbors are immediately 
reflected and shown in the screen (the neighbor’s wealth is only shown in the visible condition). Then, in this 
example, a focal subject is asked whether to cut a randomly chosen tie (“Cut”) or stay connected (“Do not 
cut”) with one of the connecting neighbors (linked with the red dotted line). If the focal subject chooses to cut 
the tie, the tie dissolves without the approval of the connecting neighbor (there is unilateral decision-making 
for breaking a tie, but bilateral decision-making for forming a tie). Orange represents cooperation at the last 
round, and cyan represents defection at the last round.       

1.4. Parameters in the actual rounds 

We aimed to examine the effect of the visibility of connecting neighbors’ wealth and initial 
inequality conditions on the dynamics of economic inequality and other outcomes. Ten actual 
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rounds were implemented for each session. The number of rounds (i.e., 10) was fixed, but this was 
not told to the subjects in order to prevent end-game effects; instead, the game ended suddenly from 
the perspective of the players5.  

We manipulated two conditions across sessions: the level of economic inequality among the subjects 
in the initial round, and the visibility of connecting neighbors’ wealth information (which was the 
same for all subjects in all rounds of a given session).   

We prepared three levels of the initial economic inequality: “none” (Gini = 0.0), “low” (Gini = 0.2) 
and “high” (Gini = 0.4) (Extended Data Table 1 and Extended Data Fig. 1). To experimentally 
generate different levels of economic inequality, and to quantify the amount of inequality in each 
group as the game progressed, we primarily used a relative inequality measure, namely, the Gini 
coefficient6-8. The Gini coefficient, which is a standard measure of inequality, is defined as “mean 
difference in wealth divided by twice the arithmetic mean” (following the scale invariance 
principle). This is in contrast to a “mean difference” measure (Extended Data Fig. 5a), which is 
defined as “the average absolute difference in wealth between all pairs of individuals” (following 
the translation invariance principle), which we will return to below.  

The Gini coefficient is given as: 

Gini = (ΣΣ|xi – xj|)/2n2µ . 

Here, the wealth of each subject is given by x, the size of the population is given by n (i and j range 
from 1 to n in each Σ), and µ is the mean wealth of the population. 

These three different levels (Gini = 0.0, 0.2, and 0.4) were achieved by manipulating three 
parameters shaping the wealth distribution of subjects: the initial wealth of subjects in the rich group 
(r), the initial wealth of subjects in the poor group (p), and the fraction/probability of subjects being 
assigned to the rich group (f). Accordingly, we generated two groups of different initial wealth. The 
parameter settings stated below make the expected average initial wealth for each session 500 units 
regardless of the combination of (r, p, f).  

First, when there was no initial economic inequality, (r, p, f) was set to be (500, 500, 0.5) 
[Condition A], which meant that each subject had a 50% chance to be assigned to the “rich” group 
with an initial wealth of 500, and the other 50% chance to be assigned to a “poor” group with the 
initial wealth of 500. Obviously, in this setting, there was no difference between the “rich” and 
“poor” groups. This setting yielded the initial Gini coefficient of 0.0 and the initial mean difference 
of 0.      

Second, when the level of initial economic inequality was low, (r, p, f) was set to be (700, 300, 0.5) 
[Condition B], which meant that each subject had a 50% chance of being assigned to the rich group 
with an initial wealth of 700, and the other 50% were assigned to a poor group with the initial 
wealth of 300. For this low inequality condition, a second possibility was that (r, p, f) was set to be 
(850, 350, 0.3) [Condition C], which meant that each subject had a 30% chance of being assigned 
to the rich group with an initial wealth of 850, and the other 70% were assigned to a poor group with 
the initial wealth of 350. These settings roughly generated the initial Gini coefficient of 0.2 
(observed values ranged from 0.117 to 0.218) and an initial mean difference of 200 (observed values 
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ranged from 98.7 to 250.0). Here, we generated two different wealth distributions because this 
would allow us to examine different combinations of wealth share and population share which 
achieved the same level of economic inequality (please see details in Section 2.3. and Extended 
Data Table 1 and Extended Data Fig. 1).      

Third, when the level of initial economic inequality was high, the parameters (r, p, f) were set to be 
(1,150, 200, 0.3) [Condition D], which meant that each subject had a 30% chance of being assigned 
to the rich group with an initial wealth of 1150, and the other 70% were assigned to a poor group 
with the initial wealth of 200.  This setting roughly generated the initial Gini coefficient of 0.4 
(observed values ranged from 0.347 to 0.411) and an initial mean difference of 399 (observed values 
ranged from 232.7 to 475.0).  

Next, in a random half of the experimental sessions, subjects could see connecting neighbors’ 
wealth information, i.e., when the setting was the “visible” condition (v =1). Even when the wealth 
of connected neighbors was visible, however, the subjects were not explicitly informed about who 
was assigned to which group (rich or poor) or explicitly informed of the existence of the two 
different initial wealth groups. Rather, in the “visible” condition, a subject could just see the amount 
of wealth of connected neighbors as well as his or her own wealth, and this information was updated 
at each round. In the “invisible” condition, a subject could see only his own wealth.  

In the visible condition, as in the invisible condition, subjects were not shown their neighbors 
connections. 

Since we performed ten sessions for each of four different wealth settings with two different 
visibility conditions, we performed a total of 80 sessions. 

1.5. Implementations of actual rounds 

Each subject was initially assigned to one location in an Erdos-Renyi random social network, with 
possible connections between each pair of subjects realized with a probability of 0.3 (Fig. 1). Then, 
each subject was assigned at random to one of the two initial wealth levels (poor or rich) by a fixed 
probability (f = probability of 0.3 or 0.5 of being rich, depending on condition). Once each subject 
was assigned to be either poor or rich, each subject’s initial wealth (starting units) was automatically 
fixed depending on the parameter setting (r and p), and was shown to the subject. Subjects were not 
informed about the overall wealth distribution. 

Each round consisted of two steps: the cooperation step and the rewiring step (shown below). We 
repeated the cooperation step and the rewiring step ten times, and recorded the dynamics of the 
social networks.   
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a 

b 

c 

d 

Screenshots of actual rounds. a – b, The screenshots for the “visible” condition are shown. c – d, The 
screenshots for the “invisible” condition are shown; the connecting neighbors’ wealth information is not 
available. Please refer to the explanation of the screenshots for practice rounds for details.   

With respect to the cooperation step, each subject could choose to cooperate with connecting 
neighbors (paying 50 units multiplied by the number of connecting neighbors) or to defect against 
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all of them (paying 0 units) at each round. Please note that subjects made a single choice with all 
their connecting neighbors. In a simplified example (the number of connecting neighbors is one), 
when one of the connecting neighbors of the focal subject chose to cooperate, the focal subject (as 
well as the other connecting neighbors of that neighbor) received 100 units by virtue of the 
neighbor’s decision. When the neighbor chose to defect, the focal subject did not receive any units 
by virtue of the neighbor’s decision. Thus, for each tie, the focal subject would earn either 100 units 
(defection towards cooperating neighbor), 50 units (both cooperation), 0 units (both defection), or –
50 units (cooperation towards defecting neighbor) (Extended Data Fig. 2). Prior to making their 
decision in each round, subjects were shown their connecting neighbors’ last move (cooperate or 
defect), except in the first round (where no previous moves existed). This was true in all conditions, 
regardless of the visibility of connecting neighbors’ wealth information and wealth distributions. At 
the end of each turn, participants were informed about the decisions of their connecting neighbors in 
the round, and obtained their resulting payoff. Negative values of wealth at each round were 
allowed.  

With respect to the rewiring step (after the cooperation step of each round of each session), 30% of 
all the possible pairs were chosen at random (rewiring rate = 0.3) (please refer to Section 1.6). If the 
chosen pair of subjects was currently connected, one of the two subjects was picked at random to be 
the decision-maker, and that subject decided whether or not to dissolve the tie (tie-breaking was 
unilateral). If the chosen pair was not currently connected, both subjects were asked if they wanted 
to form a tie; if both agreed, a tie was formed (tie-making was bilateral). The subjects were not 
informed of the rewiring rate of 0.3, which was held constant over the 10 rounds of all the 80 
sessions.  

At the beginning, subjects were connected to an average of 5.33 (SD = 0.98) neighbors across all the 
sessions (e.g., if there were initially exactly 17 individuals in a network, each individual had a 30% 
chance to be connected with each of 16 other individuals in the network; thus, the expected value of 
a subject’s connected neighbors would be 4.8). The average subject was given the chance to form 
2.41 new ties in an average round, and chose to do so 1.60 times on average (66.3%); the average 
subject was given the chance to break 1.22 ties in an average round, and chose to do so 0.27 times 
on average (22.4 %). Generally, consistent with past work3,4, people preferred to cut ties to defectors 
and form ties to cooperators (Supplementary Table 8). 

1.6. Relationship with the previous experimental designs 

Two previous studies by our team3,4 provided the technical foundation of the present study. The 
purpose of those studies was to investigate the role of network fluidity in evolution of cooperation in 
humans (a topic not related to wealth inequality). These two studies used the same general 
experimental procedure as the present study: recruiting workers from Amazon Mechanical Turk 
(AMT) and letting them interact anonymously using our custom software (“Breadboard” – which is 
slated for open-source release) (please refer to Section 1.1). These two studies showed the dynamic 
social networks (intermediate fluidity) achieve a higher cooperation rate over time than fixed 
networks (no fluidity) or random networks (maximum fluidity). This is one of the reasons we 
permitted rewiring of ties in this experiment. The other reasons were that this is more realistic as a 
social process, and that we wanted affirmatively to measure the impact of wealth inequality on 
social tie formation (as a welfare outcome). 
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It is known that the cooperation rate in repeated public goods game typically decays over time3,4,9. In 
static social networks with decaying cooperation, we would not fully observe the dynamics of 
wealth inequality, which is the main focus here. Most interactions would be in the right lower 
quadrant in Extended Data Fig. 2, where both an ego and an alter repeatedly choose D. Moreover, a 
certain level of network fluidity is typically observed in the modern human societies10-12. Therefore, 
we chose the rewiring rate of 0.3 for the present study, which was compatible with the rewiring rate 
maximizing cooperation rate in previous studies3,4. 
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2. Statistical analysis

2.1. Summary statistics 

A total of 1,462 subjects participated in our experiments. The average size of each session was 17.2 
(IQR: 15.0 – 19.0), and 8.9% of the subjects dropped out during the actual rounds (we included 
them in the analyses). The average cooperation rate across the sessions was 61.5% (IQR: 47.3% – 
77.9%); the average degree across the session was 8.19 (IQR: 6.50 – 9.65). These results were 
reflected in an average wealth of 1754.0 (IQR: 923.7 – 2409.0), average mean difference of 640.2 
(IQR: 393.6 – 839.0), and average Gini coefficient of 0.205 (IQR: 0.137 – 0.258). The dynamics of 
each outcome variable from the 1st to 10th rounds are shown in Fig. 2 (Gini coefficient) and Fig. 3 
(average wealth, cooperation rate, network degree, and transitivity [i.e. the probability that any two 
connecting neighbors of a focal subject connect with each other]). Network degree and transitivity 
are the two commonly used and simple measures to characterize network topology in network 
science.   

We examined between-group differences at baseline using a t test (Supplementary Table 1). The 
results show that none of the between-group comparisons (invisible v.s. visible, no initial inequality 
v.s. low initial inequality, no initial inequality v.s. high initial inequality, and low initial inequality
v.s. high initial inequality) for the various measures, except initial observed Gini coefficient (which
is our treatment assignment), are significantly different (P > 0.05). The Standard Deviations across
the two groups are roughly similar by an F test (P > 0.05), except the No initial inequality v.s. High
initial inequality comparison, with respect to the number of subjects at round 0 (P = 0.038).

Supplementary Table 1. Summary statistics at baseline at the session level (N = 80). 

Visible condition Invisible condition 

Visible 
v.s.
Invisible 

Mean SD Mean SD P 
Number of subjects at round 0 
(subjects) 18.400 3.169 18.100 3.003 0.665 

Initial observed Gini coefficient 0.192 0.142 0.191 0.142 0.965 

Average initial wealth (units) 485.257 58.645 504.685 68.322 0.176 
Average initial network degree 
(subjects) 5.443 0.917 5.214 1.034 0.298 
Drop out over the rounds 
(subjects) 1.350 1.231 1.900 1.464 0.073 

No initial inequality Low initial inequality High initial inequality 
None 
v.s. Low

None 
v.s. High

Low v.s. 
High 

Mean SD Mean SD Mean SD P P P 
Number of subjects at round 0 
(subjects) 18.050 3.649 18.650 3.134 17.650 2.231 0.534 0.679 0.161 

Initial observed Gini coefficient 0.000 0.000 0.187 0.026 0.392 0.022 <0.001 <0.001 <0.001 

Average initial wealth (units) 500.000 0.000 499.363 57.717 481.157 99.661 0.945 0.408 0.457 
Average initial network degree 
(subjects) 5.260 1.092 5.442 0.987 5.170 0.850 0.533 0.773 0.274 
Drop out over the rounds 
(subjects) 1.500 1.051 1.625 1.628 1.750 1.118 0.721 0.471 0.729 

We displayed cumulative degree distributions for each of the six initial conditions, and used 
Kolmogorov-Smirnov test to compare them (Extended Data Fig. 4); P-value correction due to 
multiple comparisons was not implemented here.  
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2.2. Analyses for session-level outcome variables 

The main outcome variables of interest (degree of economic inequality [Gini coefficient], mean 
inter-individual difference in wealth [mean difference], average wealth, cooperation rate, average 
degree, and transitivity) are measured at the session level. Thus, we analyzed 880 session-rounds (80 
sessions by 10 rounds/session + before the 1st round). Session-level results are shown in Fig. 2, Fig. 
3, and Extended Data Fig. 5a. Since multiple observations from the same session can be 
correlated, and observations from multiple sessions in the same round can be correlated, our 
statistical analyses use multiway clustering of standard errors at the level of the session and the 
round in our regression models13. Technically, this multi-way clustering is a simple extension of 
one-way clustering, and enables us to take into account multiple dimensions at the same time. The 
programming codes are written by M.A. Petersen, available at: 
http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/se_programming.htm.  

We begin by examining treatment effects on the Gini coefficient (Supplementary Table 2). We 
observe an overall significant positive effect of visibility on Gini, and of initial inequality on 
subsequent Gini (col 1). We also observe a significant interaction between visibility and initial 
inequality when predicting Gini (P = 0.043) (col 2). Therefore, we conduct decomposed analyses. 
Considering the effect of visibility by level of initial inequality, we find no significant effect of 
visibility in the no initial inequality condition (col 3), but significant positive effects of visibility in 
the low initial inequality condition (col 4) and an even larger positive effect in the high initial 
inequality condition (col 5). Considering the effect of initial inequality by visibility level, we see a 
significant effect in both the invisible condition (col 6) and the visible condition (col 7), although the 
effect is more than twice as large in the visible condition. We also note that the relationship between 
initial inequality and Gini decays over time in the invisible condition, such that no significant 
relationship exists when examining just the second half of the game (rounds 6 – 10; coeff = 0.59, P 
= 0.259); whereas initial inequality still predicts Gini in the second half of the game in the visible 
condition (coeff = 0.297, P = 0.008). 
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Supplementary Table 2. Regressions predicting Gini at the session by round level. 

(1) (2) (3) (4) (5) (6) (7) 

All All 
Initial 
Gini=0.0 

Initial
Gini=0.2

Initial 
Gini=0.4 Invisible Visible 

Visible 0.0499*** 0.00723 0.0185 0.0387** 0.104*** 

(0.0152) (0.0220) (0.0245) (0.0189) (0.0361) 

Initial Gini 0.286*** 0.179** 0.179** 0.393*** 

(0.0741) (0.0753) (0.0755) (0.102) 

Visible x InitGini 0.213** 

(0.105) 

Constant 0.124*** 0.145*** 0.139*** 0.187*** 0.211*** 0.145*** 0.153*** 

(0.0135) (0.0124) (0.0112) (0.0144) (0.0265) (0.0124) (0.0199) 

Observations 800 800 200 400 200 400 400 

Pseudo R-squared 0.268 0.295 0.023 0.075 0.202 0.115 0.308 
Clustered standard errors in parentheses 
*** P < 0.01, ** P < 0.05, * P < 0.1 

Next, we consider the mean inter-individual difference (mean difference) in wealth (Supplementary 
Table 3), rather than the Gini. The mean difference is defined as “the average absolute difference 
between all pairs of individuals” (following the translation invariance principle), while the Gini 
coefficient is defined as “mean difference divided by twice the arithmetic mean” (following the 
scale invariance principle)6-8. In other words, the Gini coefficient is a relative inequality measure, in 
which the influence of economic growth over time (or overall wealth) is controlled for, whereas the 
mean difference is an absolute inequality measure.  

The mean difference measure can capture the change of economic variation in which, for example, 
two people’s wealth changes from 1,150 and 200 (mean difference: 950) to 3,450 and 600 (mean 
difference: 2,850). On the other hand, in this example, the Gini coefficient cannot capture this 
change (in both circumstances, Gini = 0.35). This means the Gini coefficient can take economic 
growth and inflation over time into account. 

Examining the mean difference, we observe no significant overall effects of visibility and a 
marginally significant positive effect of initial inequality (col 1), but we do observe a highly 
significant interaction between the two (P = 0.005) (col 2). Therefore, we again conduct 
decomposed analyses. Considering the effect of visibility by level of initial inequality, we find a 
significant negative effect of visibility in the no initial inequality condition (col 3), no significant 
effects of visibility in the low initial inequality condition (col 4), and a significant positive effect in 
the high initial inequality condition (col 5). Considering the effect of initial inequality by visibility 
level, we see no significant effect in the invisible condition (col 6), but a significant positive effect 
in the visible condition (col 7). 

WWW.NATURE.COM/NATURE | 18

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature15392



Supplementary Table 3. Regressions predicting mean difference at the session by round level. 

(1) (2) (3) (4) (5) (6) (7) 

All All 
Initial 
Gini=0.0 

Initial
Gini=0.2

Initial 
Gini=0.4 Invisible Visible 

visible -2.096 -150.8*** -124.6** -28.25 172.7** 

(35.54) (56.48) (53.07) (48.41) (85.46) 

Initial Gini 488.2*** 116.5 116.5 859.9*** 

(135.9) (177.8) (178.7) (186.9) 

Visible x Initial Gini 743.4*** 

(266.0) 

Constant 588.9*** 663.2*** 627.8*** 721.9*** 674.4*** 663.2*** 512.5*** 

(96.98) (110.0) (101.2) (99.41) (65.32) (110.0) (77.59) 

Observations 800 800 200 400 200 400 400 

Pseudo R-squared 0.045 0.070 0.044 0.002 0.075 0.002 0.141 
Clustered standard errors in parentheses 
*** P < 0.01, ** P < 0.05, * P < 0.1 

Next, we consider average wealth, cooperation rate, degree, and transitivity (Supplementary Table 
4). For all four measures, we observe a significant negative relationship with visibility, no 
significant relationship with initial inequality, and no significant interaction between visibility and 
initial inequality. The only exception is a significant negative effect of initial inequality on wealth, 
but this effect is somewhat transient: when examining the second half of the game, there is no longer 
a significant relationship between initial equality and wealth (coeff =  –926, P = 0.066; only a 
marginal trend) while visibility continues to have a strong significant negative effect on wealth 
(coeff = –816, P < 0.001).  

This series of results (Supplementary Tables 2, 3 and 4) suggests that, in the No Initial Inequality 
condition, visibility decreases the level of average wealth; this decrease masks the positive effect of 
visibility on the reduction of economic inequality as measured by Gini coefficient (this is can be 
seen by examining the mean difference in subjects’ wealth, defined as Gini coefficient multiplied by 
2µ, rather than the Gini coefficient). 
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Supplementary Table 4. Regressions predicting average wealth, cooperation rate and degree at the 
session by round level. 

(1) (2) (3) (4) (5) (6) (7) (8)

Average wealth Cooperation rate Degree Transitivity 

Visible -489.6*** -550.8*** -0.208*** -0.216*** -0.991** -1.512** -0.0962*** -0.0877***

(149.7) (187.8) (0.0377) (0.0515) (0.392) (0.608) (0.0215) (0.0260) 

Initial Gini -669.6** -822.8** -0.0835 -0.103 -1.713 -3.018 -0.0422 -0.0208

(285.3) (410.8) (0.109) (0.138) (1.238) (1.947) (0.0547) (0.0718) 

Visible x 
Initial Gini 306.3 0.0384 2.609 -0.0428

(543.4) (0.210) (2.425) (0.109) 

Constant 2,259*** 2,289*** 0.736*** 0.740*** 9.311*** 9.572*** 0.642*** 0.638*** 

(349.1) (360.7) (0.0309) (0.0309) (0.466) (0.554) (0.0362) (0.0360) 

Observatio
ns 800 800 800 800 800 800 800 800 

Pseudo R-
squared 0.065 0.065 0.228 0.228 0.073 0.081 0.132 0.133 
Clustered standard errors in parentheses 
*** P < 0.01, ** P < 0.05, * P < 0.1 

For all the analyses in this section, we deal with initial Gini coefficient as a continuous variable (i.e. 
0.0, 0.2, and 0.4) rather than as a categorical variable. Therefore, we test the linearity assumption 
(i.e. that the potential effect of low initial inequality [Gini = 0.2] on outcome measures is half of that 
of high initial inequality [Gini = 0.4], as compared to no initial inequality [Gini = 0.0]). Using 
regression models with the above-mentioned outcomes and with or without interaction terms, 
likelihood ratio tests that compared the model with a continuous initial Gini variable to that with two 
dummy variables (three categories, with No Initial Inequality as a reference category) generally 
show no substantial difference between these two models (all P > 0.05). The linearity assumption 
was also examined and confirmed for individual-level analyses.  

Although we showed the session-level result of transitivity in Fig. 3d, the increase in transitivity 
could indeed be a byproduct of the increase in network degree across the rounds (Fig. 3c). 
Therefore, we generated a random graph with the same network size and degree as those in the 
observed network at each round in each session, repeated the generation of a random graph 10,000 
times, and took the mean of transitivity from the 10,000 graphs. The mean can be interpreted as the 
expected transitivity given a certain network size and degree, and the difference between the 
observed transitivity and the expected transitivity can be denoted as “excess transitivity adjusted for 
degree.” The dynamics of excess transitivity (Extended Data Fig. 5b) implies that the difference in 
transitivity between the visible and the invisible conditions (Fig. 3d) can be explained by the 
difference in network degree (Fig. 3c).  
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We also examined how the prevalent cooperation rates of subjects might affect game outcomes, by 
evaluating how the (unconditional) cooperation rate at the first round in each session was associated 
with the Gini coefficient, average wealth, cooperation rate, and degree at the final round (Extended 
Data Fig. 7). We show the aggregated relationship patterns with loess smoothed fit curves. Of 
course, the cooperation rate at the first round is also determined by the treatment variables of 
visibility and economic inequality conditions.  

2.3. Comparison of the two conditions of low-level economic inequality 

As described above, we included two different initial wealth distributions which both had Gini = 0.2 
(low initial inequality, conditions B and C). The Gini coefficient uses a Lorenz curve to characterize 
the degree of economic inequality as the combination of the wealth share (y axis of the Lorenz 
curve) and the population share (x axis of the Lorenz curve) (Extended Data Fig. 1). Since many 
combinations of the wealth and population shares can achieve the same amount of economic 
inequality (i.e., same Gini coefficient), we wanted to explore whether these distributional 
differences for a given Gini would affect our results. Hence, we used two different Gini = 0.2 
conditions, such that our four conditions formed the four vertices of the square of condition A 
through D, as shown in Extended Data Fig. 1. 

Here, we examine whether these two Gini = 0.2 conditions differed on any of our outcome variables 
(Supplementary Table 5). To do so, we regress our five main outcome measures (Gini coefficient, 
mean difference, wealth, cooperation, and degree) against a binary indicator for condition B versus 
C, and a binary indicator for the “visible” condition. We find no significant effects of condition B vs 
C (P > 0.3 for all), and, in separate regressions, no significant interactions between condition B vs C 
and visibility (P > 0.4 for all). Therefore, these two initial settings of the low-level economic 
inequality do not seem to differ in any meaningful way, justifying our decisions to jointly analyze 
them as a single “Low Inequality” condition.   

Supplementary Table 5. Regression analysis comparing Conditions B and C for all measures at the 
session by round level. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Gini Mean difference Average wealth Cooperation rate Degree 

Visible  0.0387** 0.0333 -28.25 -43.09 -473.1*** -505.7** -0.217*** -0.191*** 0.0781 -0.299 

(0.0189) (0.0278) (48.37) (74.45) (177.2) (206.2) (0.0504) (0.0610) (0.619) (0.811) 

Condition C  0.00515 -0.000172 20.77 5.925 -47.14 -79.79 -0.0471 -0.0215 -1.390** -1.767** 

(0.0188) (0.0276) (47.50) (76.29) (126.1) (119.8) (0.0455) (0.0647) (0.619) (0.800) 

Visible x 
Condition C 0.0106 29.69 65.31 -0.0512 0.754 

(0.0372) (94.25) (249.3) (0.0902) (1.236) 

Constant 0.185*** 0.187*** 711.6*** 719.0*** 2,150*** 2,167*** 0.741*** 0.728*** 9.570*** 9.758*** 

(0.0197) (0.0234) (102.2) (111.8) (347.7) (351.9) (0.0383) (0.0429) (0.544) (0.631) 
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Observations 400 400 400 400 400 400 400 400 200 200 

Pseudo R-
squared 0.076 0.077 0.003 0.003 0.052 0.053 0.247 0.250 0.107 0.115 

Clustered standard errors in parentheses 
*** P < 0.01, ** P < 0.05, * P < 0.1 

2.4. Analyses for cooperation behaviors in the 1st round 

To understand which behavioral mechanisms shape the outcomes that we found at the session level 
(see Section 2.2), we performed regression analyses with logit models of the individual-level data. 
We began by considering cooperation in the first round. Since there were no multiple observation 
over rounds (only first round is used in this case), our statistical analyses used clustering of standard 
errors at the level of the session. 

For cooperation behaviors at the 1st round, we examined if the visibility of connecting neighbors’ 
wealth information makes a difference in the subject’s very first decision (prior to receiving any 
feedback about the behavior of others). Regressing cooperation on the visibility of connecting 
neighbors’ wealth information shows that the “visible” condition is associated with lower initial 
cooperation probability (coeff = –0.318, P = 0.010) (Supplementary Table 6, col 1: concise 
model).  

Supplementary Table 6. Logit models predicting cooperation behaviors at the 1st round (n = 1,442 
decisions).  

(1) (2) (3) (4) (5) (6) (7) (8)

Invisible Invisible Invisible Visible Visible Visible 
Initial Initial Initial Initial Initial Initial 

All All Gini = 0.0 Gini = 0.2 Gini = 0.4 Gini = 0.0 Gini = 0.2 Gini = 0.4 

Ego's degree -0.133*** 0.0262 -0.147*** -0.163* -0.0806 -0.132*** -0.328***
(0.0271) (0.0725) (0.0548) (0.0916) (0.0723) (0.0452) (0.103) 

Ego's initial wealth 
(100-unit change) 

0.0212 -0.0798 0.0327 0.0802 0.0525 

(0.0398) (0.0684) (0.0952) (0.0898) (0.0641) 

Visibility -0.318*** -0.938**

(0.123) (0.450)
Ego's initial wealth 
≥ Connecting alters' 
average initial 
wealth or not, A 

-0.590* 0.356 0.791 -0.0294 0.0429 
(0.333) (0.366) (0.592) (0.391) (0.440) 

Visibility x A 0.479

(0.480) 

Initial Gini -4.433***
(1.094)

Visibility x Initial 
Gini 

2.752*

(1.520)

A x Initial Gini 3.440***

(1.091)

A x Visibility x Initial 
Gini 

-2.207

(1.622)
Constant 0.924*** 2.489*** 1.165** 2.019*** 0.856 1.229*** 1.015** 1.928*** 

(0.0955) (0.398) (0.460) (0.376) (0.553) (0.417) (0.424) (0.604) 
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Observations 1,442 1,442 183 360 168 175 379 177 

Beta coefficients of logit models are reported. Clustered standard errors in parentheses 
*** P < 0.01, ** P < 0.05, * P < 0.1 
Ego’s degree represents the number of connecting neighbors of a focal ego; Ego's initial wealth ≥ Connecting alters' average initial 
wealth (or not) represents the variable of “social comparison.”  

We sought to understand why the visibility of the wealth information affects first period cooperation. 
One possibility is that visibility allows subjects to compare and judge the level of their wealth with 
reference to that of connecting neighbors’ wealth. Therefore, we constructed models reflecting this 
possibility. We posit that, for both the “invisible” and “visible” conditions, each subject jointly uses 
the information at hand (i.e., the focal subject’s degree, the focal subject’s wealth) when the focal 
subject decides to cooperate or defect. And we posit that how they use this information varies by 
each of the six settings (“invisible” or “visible” combined with the three level of economic 
inequality). In addition, we posit that, only for the “visible” condition, each subject uses the 
information regarding whether the focal subject’s wealth is larger or smaller than the average wealth 
of his connecting neighbors at the present round. Therefore, we create a simple dichotomous 
variable to represent whether the focal subject’s wealth is larger than the average wealth of 
connecting neighbors, which we call the variable of social comparison (if ego’s wealth is the same 
or larger than alters’ average wealth at the round, the value of the variable of social comparison is 1; 
otherwise 0). We also perform further analyses by using alters’ median wealth instead of alters’ 
average wealth, which did not change the findings.  

Here, we regressed cooperation (1: cooperate with connecting neighbors, 0: defect) on focal 
subject’s initial wealth, focal subject’s present wealth, focal subject’s present degree, and the 
variable of social comparison, separately for each of the six settings (“invisible” or “visible” 
combined with the three levels of economic inequality). We included the variable of social 
comparison even in the “invisible” condition, so that the models for the “invisible” condition are the 
same as those for the “visible” conditions. We expected the coefficient for the variable of social 
comparison in the “invisible” condition to be non-significant, as this information is unobservable to 
the subjects (Supplementary Tables 6, cols 3 – 8: stratified models). The model with the 
interaction term, which is not as parsimonious a model as the concise model, confirmed the findings 
from the stratified models (P for the three-way interaction term [visibility × initial Gini coefficient × 
variable of social comparison] = 0.174 – as further explained in Section 2.6) (Supplementary Table 
6, col 2: interaction model).  

In sum, the results show that the variable of social comparison is not associated with first round 
cooperation in any of the six settings, which suggests that the visibility of connecting neighbors’ 
wealth information decreases the level of subjects’ cooperation overall, regardless of social 
comparison.  

2.5. Analyses for cooperation behaviors at the 2nd – 10th rounds 

At the 2nd-10th rounds, subjects can refer to past history of cooperation behaviors when they decide 
to cooperate or defect, which is a major difference from the 1st round. Therefore, we take into 
account focal subject’s cooperation at the last round and the connecting neighbors’ cooperation at 
the last round in the logit models. Furthermore, we again used multiway clustering of standard errors 
at the level of the session and the round in our regression models13. The results from the concise 
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model shows that the “visible” condition was associated with lower cooperation probability (coeff = 
–0.366, P < 0.001) (Supplementary Table 7, col1: concise model), and, therefore, we sought to
understand whether the visibility of wealth information plays a role in the 2nd – 10th rounds.

Supplementary Table 7. Logit models predicting cooperation behaviors at the 2nd to 10th rounds (n = 
12,110 decisions). 

(1) (2) (3) (4) (5) (6) (7) (8)

Invisible Invisible Invisible Visible Visible Visible

Initial Initial Initial Initial Initial Initial

All All Gini = 0.0 Gini = 0.2 Gini = 0.4 Gini = 0.0 Gini = 0.2 Gini = 0.4

Ego's degree 0.0737*** 0.123*** 0.0723** 0.208*** 0.0635 0.0511* -0.0114

(0.0226) (0.0382) (0.0318) (0.0617) (0.0427) (0.0282) (0.0326) 

Ego's initial wealth 
(100-unit change) 

0.0473*** -0.00459 0.0610** 0.0516* 0.0775*** 

(0.0176) (0.0363) (0.0300) (0.0311) (0.0234) 

Ego's last wealth 
(100-unit change) 

-0.0283*** -0.0351*** -0.0240*** -0.0451*** -0.0353*** -0.0259*** -0.0228***

(0.00513) (0.00538) (0.00575) (0.0142) (0.00843) (0.00459) (0.00721) 

Ego's last move, A 2.201*** 0.977*** 2.059 2.005*** 0.160 0.786** 0.691*** 1.157*** 

(0.113) (0.172) (1.313) (0.273) (0.445) (0.319) (0.244) (0.323) 

Connecting alters' 
average last move 
(cooperation ≥ 0.50), 
B 

1.447*** 1.072*** 0.937* 1.426*** 0.538 1.578*** 1.135*** 1.220*** 

(0.0944) (0.178) (0.536) (0.301) (0.373) (0.249) (0.129) (0.349) 

A x B 
1.129*** 0.627 0.611* 1.792*** 0.941** 0.947*** 0.618 

(0.167) (1.428) (0.345) (0.544) (0.381) (0.213) (0.466) 

Visibility -0.366*** -1.089***

(0.0752) (0.228) 

Ego's last wealth ≥ 
Connecting alters' 
average last wealth or 
not, C 

-0.622*** -0.250 -0.228* 0.105 0.370** -0.100 -0.633***

(0.226) (0.311) (0.122) (0.200) (0.168) (0.0820) (0.156) 

Visibility x C 1.161*** 

(0.321) 

Initial Gini -0.708

(0.716) 

Visibility x Initial Gini 2.258** 

(0.920) 

C x Initial Gini 1.442* 

(0.826) 
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C x Visibility x Initial 
Gini 

-3.929***

(1.381) 

Constant -1.809*** -1.350*** -1.834*** -2.019*** -1.911*** -2.087*** -1.777*** -1.251***

(0.166) (0.277) (0.586) (0.487) (0.491) (0.232) (0.309) (0.317) 

Observations 12,110 12,110 1,532 3,000 1,378 1,499 3,207 1,494 
Beta coefficients of logit models are reported. Clustered standard errors in parentheses 
*** P < 0.01, ** P < 0.05, * P < 0.1 
Ego’s degree represents the number of connecting neighbors of a focal ego; Ego's last wealth ≥ Connecting alters' average last wealth 
(or not) represents the variable of “social comparison.”  

For the stratified models, we included the same covariates as the models for the 1st round as well as 
focal subject’s cooperation at the last round and the connecting neighbors’ average cooperation at 
the last round, and the interaction term of the focal subject’s and connecting neighbors’ cooperation 
at the last round. We also created a dichotomous variable to represent whether the cooperation rate 
of all the connecting neighbors at the present round is more than 50% or not (if the percentage of 
connecting neighbors of a focal ego who are choosing cooperation is 50% or more, this variable is 1; 
otherwise 0).  

The results show that, as the level of economic inequality increases (with the Gini coefficient going 
from 0.0 to 0.4), the effect of social comparison on cooperation changes from positive to negative 
(i.e. coeffs = 0.370, –0.100, and –0.633) (Fig. 4 and Supplementary Table 7, cols 6 – 8: stratified 
model) when the connecting neighbors’ wealth information is available. However, this finding is not 
found when the connecting neighbors’ wealth information is not available (Fig. 4 and 
Supplementary Table 7, cols 3 – 5: stratified model). In the invisible condition (Fig. 4, left), 
subjects who are poorer than their neighbors are as likely to cooperate as subjects who are richer 
than their neighbors (which is not surprising, since they are unaware of the wealth of their 
neighbors). 

In order to formally test if the finding that the association between the variable of social comparison 
(the focal ego is richer) and cooperation decreases as the degree of initial economic inequality 
increases only in the “visible” condition, we construct a regression model using the all the subjects 
with the three-way interaction term (visibility × initial Gini coefficient × variable of social 
comparison). The P for the three-way interaction term is 0.002, which suggests that the phenomenon 
is observed only in the “visible” condition (Supplementary Table 7, col 2: interaction model).      

To extend this analysis, we performed the same analysis stratified by the last move of the focal 
individuals. The results show that the positive association of the variable of social comparison (the 
focal ego is richer) with cooperation in the No Initial Inequality setting in the visible condition is 
driven by previous cooperators (Extended Data Fig. 6a). On the other hand, the negative 
association of the variable of social comparison (the focal ego is richer) with cooperation under the 
High Initial Inequality in the visible condition is driven by previous defectors (Extended Data Fig. 
6b).     

2.6. Analyses for rewiring/social connection behavior 
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With respect to rewiring behavior, we examined if the visibility of connecting neighbors’ wealth 
information made a difference in the subject’s decision. In a multivariable logit model, we regressed 
the rewiring behavior (connect with the focal neighbor or not) on the visibility of connecting 
neighbors’ wealth information controlling for the characteristic of the tie (new or existing tie), the 
focal individual’s cooperation at the present round, and the focal neighbor’s cooperation at the 
present round. The results show that the “visible” condition is not associated with becoming 
connected with a neighbor (coeff = –0.00427, P = 0.960), suggesting that the visibility of connecting 
neighbors’ wealth information does not have a substantial influence on the subjects’ rewiring 
behavior (Supplementary Table 8). This conclusion is also supported from agent-based simulations 
(see Section 3).   

Supplementary Table 8. Logit models predicting rewiring behaviors (n = 49,644 decisions). 
(1) (2) (3) 

All Existing ties New ties 

Visibility -0.00427 -0.0327 0.0225 

(0.0858) (0.0869) (0.0981) 

Existing ties (Existing = 1, New = 0) 0.486***

(0.0764)

Ego's last move -0.829*** -0.872*** -0.866***

(0.0935) (0.0992) (0.101)

Alter's last move 2.968*** 3.621*** 2.741***

(0.109) (0.179) (0.0988)

Ego's initial wealth (100-unit change) 0.0131 -0.0200 0.0282*

(0.0113) (0.0152) (0.0155)

Ego's last wealth (100-unit change) 0.00838* 0.0165*** 0.00311
(0.00454) (0.00605) (0.00487)

Constant -0.375*** -0.0137 -0.287**

(0.126) (0.152) (0.128)

Observations 49,644 16,700 32,944

Beta coefficients of logit models are reported. Clustered standard errors in parentheses 
*** P < 0.01, ** P < 0.05, * P < 0.1 

Indeed, Fig. 3c shows that subjects connect with a larger number of neighbors when the connecting 
neighbors’ wealth information is available than when that is not available. However, the results from 
the regression models and agent-based simulations (see section 3) suggest that the difference in the 
degree between the visible and the invisible conditions can be simply explained by the difference in 
the cooperation rate. In more concrete terms, the invisible condition generally achieves a higher 
cooperation rate, and subjects are more likely to connect with subjects who cooperate at the last 
round, and, therefore, the invisible condition generally achieves higher degree, resulting in more 
dense social networks over the rounds.   

2.7. The influence of rewiring behaviors on cooperation behaviors 

Some subjects at a focal round choose to form a larger number of new ties or to break a larger 
number of existing ties, but others do not. Therefore, in this section, we examine the influence of 
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forming/breaking ties in the t-th round on the cooperation behaviors at the t+1-th round. In more 
concrete terms, we additionally generated four variables: i) how many times a focal subject is asked 
to choose to make a new tie or not, in a focal round, ii) how often the focal subject chooses to 
“make” a new tie (proportion; ranging from 0 to 1), iii) how many times a focal subject is asked to 
choose to break an existing tie or not, at a focal round, and iv) how often the focal subject chooses to 
“cut” an existing tie (proportion; ranging from 0 to 1). When the variable i) or iii) is 0, we set the 
value for the variable ii) or iv) as 0, respectively. Then, we included these variables at the t-th round 
into the regression models to explain cooperation behaviors at the t+1-th round among the 2nd to 10th 
rounds. The results are shown in Supplementary Table 9.  In sum, forming a larger number of new 
ties is associated with subjects being less likely to cooperate in the next round, while breaking a 
larger number of existing ties is associated with subjects being more likely to cooperate in the next 
round. 
 
Supplementary Table 9. Additional analysis to explore the influence of rewiring behaviors on 
cooperation behaviors (n = 12,110 decisions). 
 (1) (2) 

 Supplementary 
Table 7 (2) 

Variable added 

   

Ego's degree 0.0737*** 0.0872*** 

 (0.0226) (0.0230) 

Ego's initial wealth (100-unit change) 0.0473*** 0.0591*** 

 (0.0176) (0.0170) 

Ego's last wealth (100-unit change) -0.0283*** -0.0394*** 

 (0.00513) (0.00583) 
Ego's last move, A 0.977*** 0.785*** 

 (0.172) (0.176) 
Connecting alters' average last move (Cooperation ≥ 0.50), B 1.072*** 1.159*** 

 (0.178) (0.195) 
A x B 1.129*** 1.130*** 

 (0.167) (0.168) 
Visibility -1.089*** -1.178*** 

 (0.228) (0.231) 
Ego's last wealth ≥ connecting alters' average last wealth or not, C -0.622*** -0.602** 

 (0.226) (0.242) 
Visibility x C 1.161*** 1.178*** 

 (0.321) (0.318) 

Initial Gini -0.708 -0.782 
 (0.716) (0.743) 

Visibility x Initial Gini 2.258** 2.356*** 
 (0.920) (0.902) 

C x Initial Gini 1.442* 1.458* 
 (0.826) (0.860) 

C x Visibility x Initial Gini -3.929*** -3.931*** 
 (1.381) (1.344) 

How many times ego is asked to make a new tie or not (variable i)  -0.0940*** 
  (0.0224) 

How much percent ego chooses to “Make” in variable i (variable ii)  -0.859*** 
  (0.105) 
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How many times ego is asked to break an existing tie or not (variable iii)   0.0810** 

  (0.0319) 
How much percent ego chooses to “Cut” in variable iii (variable iv)  0.289** 

  (0.116) 
Constant -1.350*** -0.634** 

 (0.277) (0.281) 
Observations 12,110 12,110 

Beta coefficients of logit models are reported. Clustered standard errors in parentheses 
*** P < 0.01, ** P < 0.05, * P < 0.1 
Ego’s degree represents the number of connecting neighbors of a focal ego; Ego's last wealth ≥ Connecting alters' average last wealth 
(or not) represents the variable of “social comparison.”  
 
 
2.8. Analyses for initially rich and poor groups 
	
  
We examine if subjects who are initially assigned to lower endowment (i.e. 200 units when Gini = 
0.4, and 300 or 350 units when Gini = 0.2) can catch up with those who are initially assigned to 
higher endowment (i.e. 1,150 units when Gini = 0.4, and 700 or 850 units when Gini = 0.2).  
 
Hence, we examined the dynamics of average wealth separately for the group of initially poor 
subjects and the group of initially rich subjects, with analytic procedures compatible with Figs. 2 
and 3 (Extended Data Fig. 3a and b). Moreover, we calculated standardized wealth at each session 
at each initial inequality and visibility setting, and traced the distribution of relative wealth between 
a group of initially poor subjects and a group of initially rich subjects (Extended Data Fig. 3c – f).    
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3. Agent-Based Simulations  
 
3.1. Agent-based models 
 
The combination of richer subjects’ cooperation with poorer subjects and poorer subjects’ defection 
against richer subjects jointly decreases the level of economic inequality, while the combination of 
richer subjects’ defection against poorer subjects and poorer subjects’ cooperation with richer 
subjects jointly increases the level of economic inequality (Extended Data Fig. 2). Therefore, the 
behavioral mechanism we report based on the analyses at the individual level (Section 2.5) can 
intuitively explain the session-level dynamics of the degree of economic inequality. We perform 
agent-based simulations to confirm that the comparison of the wealth of the focal individual and the 
average wealth of connecting neighbors is a sufficient variable to explain the difference between the 
consequences in the “visible” condition and those in the “invisible” condition across the different 
levels of initial economic inequality.  
 
We prepared for the same number of rounds (10 rounds) for each session (iteration). We use a 
random network structure to allocate agents, where 30% of all the possible dyads are connected (the 
initial network structure varies at each session). We also use the same rewiring rate (0.3). As for the 
settings of agents, we prepared for 17 individuals, which is the median of the subjects in our 
experiments, for all the sessions. In order to minimize the influence of noise, we set the drop-out 
rate during a single session to be zero.  
 
As for the settings of agent behaviors, we aimed to construct a parsimonious model to determine 
them. Although we included several control variables in the regression models for the experiments 
(e.g., degree) to control for the potential confounding (see Section 2), such full models will end in 
over-fitting in agent-based models. Therefore, we constructed theory-based models with a smaller 
number of independent variables. For a model for the situation where alters’ wealth information is 
private, we posit that the present move (cooperation) is determined only by the focal subject’s last 
move. On the other hand, for a model of the situation where alters’ wealth information is public, we 
added three variables: (a) a dichotomous variable representing if the present wealth of an ego is 
larger than the average wealth of the alters or not, (b) the initial level of wealth inequality (0, 0.2 or 
0.4), and (c) an interaction term between the dichotomous variable and the continuous variable of 
wealth inequality. Each parameter is calculated from the regression analyses. The details of our 
models for the agent-based simulations are stated as follows. 
 
First, the cooperation behavior at the 1st round is determined by nothing in the “invisible” condition 
(i.e. constant) (Supplementary Table 10, col 1) and by a continuous variable of the initial 
economic inequality (0, 0.2, and 0.4) at the “visible” condition (Supplementary Table 10, col 2). 
Second, the cooperation behavior at the 2nd – 10th rounds is determined by the focal individual's 
cooperation at the last round in the “invisible” condition (Supplementary Table 10, cols 3 and 4) 
and by the focal individual’s cooperation at the last round, the initial Gini coefficient, whether or not 
the present wealth of the focal individual is larger than the average wealth of the connecting 
neighbors (1 for yes, and 0 for no), and an interaction term (product of the latter two terms) in the 
“visible” condition (Supplementary Table 10, cols 5 and 6). This reflects the behavioral 
mechanism hypothesized by the results of the experiments. Third, the rewiring behavior is 
determined by the characteristic of the tie (new or existing tie), the focal individual’s cooperation at 
the present round, and the focal neighbor’s cooperation at the present round in both the “invisible” 
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and “visible” conditions (Supplementary Table 11).  
 
Supplementary Table 10. Parameters for cooperation behaviors used in the agent-based simulations, 
which were obtained from parsimonious logit models.  
 (1) (2) (3) (4) (5) (6) 

   Rounds 2-10 Rounds 2-10 Rounds 2-10 Rounds 2-10 

   Invisible Invisible Visible Visible 

 Round 1 Round 1 Defection at Cooperation at Defection at Cooperation at 
 Invisible Visible last move last move last move last move 

       

Ego's last wealth ≥ 
Connecting alters' 
average last wealth or 
not, C 

    0.257 0.620** 

     (0.258) (0.279) 

Initial Gini  -1.017*   1.294*** 0.422 

  (0.544)   (0.378) (0.583) 

C x Initial Gini     -2.508*** -1.170 

     (0.931) (1.120) 

Constant 0.924*** 0.813*** -1.040*** 2.062*** -1.232*** 0.737*** 

 (0.0961) (0.134) (0.192) (0.119) (0.142) (0.167) 

Observations 711 731 1,612 4,298 2,888 3,312 

Beta coefficients of logit models are reported. Clustered standard errors in parentheses 
*** P < 0.01, ** P < 0.05, * P < 0.1 
Ego's last wealth ≥ Connecting alters' average last wealth (or not) represents the variable of “social comparison.”  
 
Supplementary Table 11. Parameters for rewiring behaviors used in the agent-based simulations, 
which were obtained from parsimonious logit models. 

 (1) 

 All 

  

Existing ties (Existing = 1, New = 0) 0.513*** 

 (0.0758) 

Ego's last move -0.852*** 

 (0.0959) 

Alter's last move 2.965*** 

 (0.106) 

Constant -0.181*** 

 (0.0698) 

Observations 49,644 

Beta coefficients of logit models are reported. Clustered standard errors in parentheses 
*** P < 0.01, ** P < 0.05, * P < 0.1 
 
In this setting, we assume agents in the “invisible” condition cannot use any information on wealth, 
while those in the “visible” condition do use the information on wealth, in order to gain an 
understanding of the level of initial economic inequality and to examine whether or not they are 
better off than connecting neighbors. All the parameters involved are obtained from logit models 
using the data of the experiment (Supplementary Tables 10 and 11). Since we are interested in the 
influence of the initial economic inequality, we do not allow these agent behaviors to evolve over 
the ten rounds (no social learning during the session).    
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We prepared for the same eight settings as the experiments (two for the wealth information 
availability (“invisible”, “visible”) conditions by four wealth distributions (conditions A – D). We 
performed the simulations 1,000 times for each setting (a total of 8,000 iterations). For details, 
please refer to the R code for the agent-based simulations (Section 3.3). The main results of the 
agent-based simulations are shown in Extended Data Fig. 8, where we show the agent-based 
simulations roughly reproduce the results from the experiments.  
 
Since we did not allow agents to drop out in the simulations, the simulation results also suggest that 
the potential influence of drop outs for the entire analysis is likely small.    
 
 
3.2. Robustness check of our experimental setting 
 
In the 80 session of our experiment, we terminated each session (suddenly) at the tenth round, and 
we always applied the same rules for rewiring behaviors. Since we did not tell subjects at which 
round a session would finish, it is possible for us to simulate and predict the influence of changing 
the round length with agent-based models. Using the estimated parameters from the implemented 
10-round experiments, we simulated the Gini coefficient and other dynamics up to 20 rounds. 
Results show that a substantial effect of visibility on Gini coefficient, especially when initial Gini = 
0.2 and 0.4, is indeed stably observed up to Round 20 (Extended Data Fig. 9). Thus, our 
simulations suggest that our results are robust to running the experiments for a longer time.   
 
 
3.3. R code for simulations  
 
# Agent-based modeling for the inequality experiment 
 
##################################################### 
# Section 1. NOTES, packages, and Parameters 
#Importing libary  
suppressMessages(library(igraph)) # for network graphing  
suppressMessages(library(reldist)) # for gini calculation 
suppressMessages(library(boot)) # for inv.logit calculation  
#Two prefixed functions 
#rank 
rank1 = function(x) {rank(x,na.last=NA,ties.method="average")[1]} #a smaller value has a smaller rank. 
 
#gini mean difference (a.k.a. mean difference: please refer to https://stat.ethz.ch/pipermail/r-help/2003-April/032782.html) 
gmd = function(x) {  
    x1 = na.omit(x) 
    n = length(x1) 
 tmp = 0 
    for (i in 1:n) { 
       for (j in 1:n) { 
          tmp <- tmp + abs(x1[i]-x1[j]) 
       } 
    } 
 answer = tmp/(n*n) 
    return(answer) 
  } 
  
# List of manipulating parameters of experiments  
#L : number of round 
#V : Visible or not 
#A : Income of a rich-group subject 
#B : Income of a poor-group subject  
#R : Probability to be assigned to a rich group  
#I : Number of the same-parameter trial  
 
#Example 
L = 10 
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V = 0 
A = 700 
B = 300 
R = 0.5 
I = 0 
 
# List of fixed parameters of experiments (assumptions) 
#Rewiring rate = 0.3  
 
#GINI coefficient (can be known by A or B) 
GINI = 0*as.numeric(A==500) + 0.2*as.numeric(A %in% c(700,850)) + 0.4*as.numeric(A ==1150) 
 
#Collecting data frame (final output data frame) 
result = 
data.frame(round=0:L,n_par=NA,n_A=NA,avg_coop=NA,avg_degree=NA,avg_wealth=NA,gini=NA,gmd=NA,avg_coop_A=NA,avg_degree_A=NA,avg_wealth_
A=NA,gini_A=NA,gmd_A=NA,avg_coop_B=NA,avg_degree_B=NA,avg_wealth_B=NA,gini_B=NA,gmd_B=NA) 

#_A is for a richer group and _B is for a poorer group 
 
##################################################### 
# Section 2: Round 0 (Agents and environments) 
#Node data generation  
N = 17 # median of the number of participants over rounds.  
node_r0 = data.frame(ego_id=1:N, round=0) 
node_r0$group = sample(c("rich","poor"),N,replace=TRUE,prob=c(R,1-R)) #R is defined as the probability to be assigned to the rich 
group 

node_r0$initial_wealth = ifelse(node_r0$group=="rich",A,B) 
 
#Link data generation 
ego_list = NULL 
for (i in 1:N) { ego_list = c(ego_list,rep(i,N)) } 
link_r0 = data.frame(ego_id=ego_list,alt_id=rep(1:N,N)) 
link_r0 = link_r0[(link_r0$ego_id < link_r0$alt_id),] #The link was bidirectional, and thus the half and self are omitted. 
link_r0$connected = sample(0:1,dim(link_r0)[1],replace=TRUE,prob=c(0.7,0.3)) #Initial rewiring rate is fixed, 0.3 
 
link_r0c_ego = link_r0[link_r0$connected==1,] 
link_r0c_alt = link_r0[link_r0$connected==1,] 
colnames(link_r0c_alt) = c("alt_id","ego_id","connected") 
link_r0c = rbind(link_r0c_ego,link_r0c_alt) #this is bidirectional (double counted) for connected ties. 
 
link_r0c = link_r0c[order(link_r0c$ego_id),] 
link_r0c$alternumber = NA #putting the number for each alter in the same ego  
link_r0c[1,]$alternumber = 1 
for (i in 1:(dim(link_r0c)[1]-1))  
 { 
 if (link_r0c[i,]$ego_id == link_r0c[i+1,]$ego_id)  
  { 
  link_r0c[i+1,]$alternumber = link_r0c[i,]$alternumber + 1 
     } 
 else 
  { 
  link_r0c[i+1,]$alternumber = 1 
  } 
 #print(i) 
 } 
link_r0c2 = reshape(link_r0c, direction = "wide", idvar=c("ego_id","connected"), timevar="alternumber") 
link_r0c2$initial_degree = apply(link_r0c2[,colnames(link_r0c2)[substr(colnames(link_r0c2),1,6) == "alt_id"]],1,function(x) 
{length(na.omit(x))}) #Degree of each ego 

link_r0c2[is.na(link_r0c2$initial_degree)==1,"initial_degree"] = 0 
 
#Reflect the degree and initial local gini coefficient into the node data 
node_r0 = merge(x=node_r0,y=link_r0c2,all.x=TRUE,all.y=FALSE,by="ego_id") 
 
node_r0$initial_avg_env_wealth = NA 
node_r0$initial_local_gini = NA #local gini coefficient of the ego and connecting alters 
node_r0$initial_rel_rank = NA #local rank of ego among the ego and connecting alters (divided by the number of the go and connecting 
alters) 

for (i in 1:(dim(node_r0)[1]))  
 { 
 node_r0[i,]$initial_avg_env_wealth = mean(na.omit(node_r0[node_r0$ego_id %in% 
node_r0[i,colnames(node_r0)[substr(colnames(node_r0),1,6) %in% c("ego_id","alt_id")]],"initial_wealth"])) 

 node_r0[i,]$initial_local_gini = gini(na.omit(node_r0[node_r0$ego_id %in% node_r0[i,colnames(node_r0)[substr(colnames(node_r0),1,6) 
%in% c("ego_id","alt_id")]],"initial_wealth"])) 

 node_r0[i,]$initial_rel_rank = rank1(na.omit(node_r0[node_r0$ego_id %in% node_r0[i,colnames(node_r0)[substr(colnames(node_r0),1,6) 
%in% c("ego_id","alt_id")]],"initial_wealth"]))/length(na.omit(node_r0[node_r0$ego_id %in% 
node_r0[i,colnames(node_r0)[substr(colnames(node_r0),1,6) %in% c("ego_id","alt_id")]],"initial_wealth"])) 

 } 
 
#Finalization of round 0 and Visualization 
#plot(graph.data.frame(link_r0[link_r0$connected==1,],directed=F)) #plot.igraph 
result[result$round==0,2:18] = 
c(length(node_r0$ego_id),length(node_r0[node_r0$group=="rich",]$ego_id),NA,mean(node_r0$initial_degree),mean(node_r0$initial_wealth),
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gini(node_r0$initial_wealth),gmd(node_r0$initial_wealth),NA,mean(node_r0[node_r0$group=="rich",]$initial_degree),mean(node_r0[node_r0
$group=="rich",]$initial_wealth),gini(node_r0[node_r0$group=="rich",]$initial_wealth),gmd(node_r0[node_r0$group=="rich",]$initial_wea
lth),NA,mean(node_r0[node_r0$group=="poor",]$initial_degree),mean(node_r0[node_r0$group=="poor",]$initial_wealth),gini(node_r0[node_r
0$group=="poor",]$initial_wealth),gmd(node_r0[node_r0$group=="poor",]$initial_wealth)) 

 
#For the loop at the next round (for round 1, the initial one is the same as the previous [1 prior] one) 
node_import = node_r0 
node_import$initial_coop = NA  
node_import$prev_coop = NA  
node_import$prev_wealth = node_import$initial_wealth 
node_import$prev_degree = node_import$initial_degree 
node_import$prev_avg_env_wealth = node_import$initial_avg_env_wealth 
node_import$prev_local_gini = node_import$initial_local_gini 
node_import$prev_rel_rank = node_import$initial_rel_rank 
node_import$prev_local_rate_coop = NA  
 
link_import = link_r0 
 
##################################################### 
# Section 3: Rounds 1 to 10 or more (behaviors in simulation: the equation of cooperation is different at round 1 because of no 
history)  

#3-1: Cooperation phase  
for (k in 1:L) 
{ 
node_rX = node_import #Importing data 
node_rX$round = node_rX$round + 1 
 
node_rX[is.na(node_rX$prev_degree)==1,"prev_degree"] = 0  
node_rX[is.na(node_rX$prev_local_rate_coop)==1,"prev_local_rate_coop"] = 0  
 
#Only this calculation needs to change from Round 1 
if (k==1) { 
 node_rX$prob_coop = as.numeric(V==0)*inv.logit(0.9241803) +  
      as.numeric(V==1)*inv.logit((-1.017021)*GINI + (0.8130213)) 
 } else { 
 node_rX$prob_coop = as.numeric(V==0 & node_rX$prev_coop==0)*inv.logit(-1.039916) + 
      as.numeric(V==0 & node_rX$prev_coop==1)*inv.logit(2.062023) + 
      as.numeric(V==1 & node_rX$prev_coop==0)*inv.logit((-
0.2574838)*as.numeric(node_rX$prev_avg_env_wealth - node_rX$prev_wealth > 0) + (-1.214198)*GINI + 
(2.508148)*GINI*as.numeric(node_rX$prev_avg_env_wealth - node_rX$prev_wealth > 0) + (-0.9749075)) + 

      as.numeric(V==1 & node_rX$prev_coop==1)*inv.logit((-
0.6197254)*as.numeric(node_rX$prev_avg_env_wealth - node_rX$prev_wealth > 0) + (-0.7480261)*GINI + 
(1.169674)*GINI*as.numeric(node_rX$prev_avg_env_wealth - node_rX$prev_wealth > 0) + (1.356784))  

 } 
 
node_rX$coop = apply(data.frame(node_rX$prob_coop),1,function(x) {sample(1:0,1,prob=c(x,(1-x)))}) 
 
if (k==1) { 
 node_rX$initial_coop = node_rX$coop 
 } else { 
 node_rX$initial_coop = node_rX$initial_coop  
} 
 
node_rX$cost = (-50)*node_rX$coop*node_rX$prev_degree 
node_rX$n_coop_received = NA  
for (i in 1:(dim(node_rX)[1]))  
 { 
 node_rX[i,]$n_coop_received = sum(node_rX[node_rX$ego_id %in% node_rX[i,colnames(node_rX)[substr(colnames(node_rX),1,6) == 
"alt_id"]],"coop"]) 

 } 
node_rX$benefit = 100*node_rX$n_coop_received 
node_rX$payoff = node_rX$cost + node_rX$benefit 
node_rX$wealth = node_rX$prev_wealth + node_rX$payoff 
node_rX$rel_rank = NA  
node_rX$local_rate_coop = NA  
for (i in 1:dim(node_rX)[1])  
 { 
 node_rX[i,]$rel_rank = rank1(na.omit(node_rX[node_rX$ego_id %in% node_rX[i,colnames(node_rX)[substr(colnames(node_rX),1,6) %in% 
c("ego_id","alt_id")]],"wealth"]))/length(na.omit(node_rX[node_rX$ego_id %in% 
node_rX[i,colnames(node_rX)[substr(colnames(node_rX),1,6) %in% c("ego_id","alt_id")]],"wealth"])) 

 node_rX[i,]$local_rate_coop = mean(na.omit(node_rX[node_rX$ego_id %in% node_rX[i,colnames(node_rX)[substr(colnames(node_rX),1,6) %in% 
c("ego_id","alt_id")]],"coop"])) 

 } 
node_rX$growth = as.numeric((node_rX$wealth/node_rX$prev_wealth) > 1) 
 
node_rX = 
node_rX[,c("ego_id","round","group","prev_degree","initial_wealth","initial_local_gini","initial_coop","coop","wealth","rel_rank","lo
cal_rate_coop","growth")] #Pruning the previous-round data (degree is not updating yet) 

 
#3-2: Rewiring phase  
# 30% of ties (unidirectional) are being rewired 
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link_rX_1 = link_import #Importing data (bidirectioanl ego-alter [ego_id < alter_id]) 
colnames(link_rX_1) = c("ego_id","alt_id","prev_connected")  
link_rX_1$challenge = sample(0:1,dim(link_rX_1)[1],replace=TRUE,prob=c(0.7,0.3)) # The bidirectional ties being rewired are selected 
(rewiring rate = 0.3).  

 
ego_node_data = 
node_rX[,c("ego_id","wealth","coop","prev_degree","initial_wealth","initial_local_gini","initial_coop","rel_rank","local_rate_coop","
growth")] 

colnames(ego_node_data) = 
c("ego_id","ego_wealth","ego_coop","ego_prev_degree","ego_initial_wealth","ego_initial_local_gini","ego_initial_coop","ego_rel_rank",
"ego_local_rate_coop","ego_growth") 

alt_node_data = 
node_rX[,c("ego_id","wealth","coop","prev_degree","initial_wealth","initial_local_gini","initial_coop","rel_rank","local_rate_coop","
growth")] 

colnames(alt_node_data) = 
c("alt_id","alt_wealth","alt_coop","alt_prev_degree","alt_initial_wealth","alt_initial_local_gini","alt_initial_coop","alt_rel_rank",
"alt_local_rate_coop","alt_growth") 

 
link_rX_2 = merge(x=link_rX_1,y=ego_node_data,all.x=TRUE,all.y=FALSE,by="ego_id") 
link_rX_3 = merge(x=link_rX_2,y=alt_node_data,all.x=TRUE,all.y=FALSE,by="alt_id") 
link_rX_3$choice = sample(c("ego","alt"),dim(link_rX_3)[1],replace=TRUE,prob=c(0.5,0.5)) #decision maker for breaking a link, which is 
an unilateral decision  

 
#ego_prob: probability of choosing to connect when challenged (asked)  
link_rX_3$ego_prob = inv.logit((0.5134401)*link_rX_3$prev_connected + (-0.852406)*link_rX_3$ego_coop + (2.96549)*link_rX_3$alt_coop + 
(-0.1808545))  

link_rX_3$alt_prob = inv.logit((0.5134401)*link_rX_3$prev_connected + (-0.852406)*link_rX_3$alt_coop + (2.96549)*link_rX_3$ego_coop + 
(-0.1808545))  

 
link_rX_3$prob_connect = ifelse(link_rX_3$prev_connected == 1, ifelse(link_rX_3$choice == "ego", link_rX_3$ego_prob, 
link_rX_3$alt_prob), link_rX_3$ego_prob*link_rX_3$alt_prob) 

 
link_rX_3$connect_update = apply(data.frame(link_rX_3$prob_connect),1, function(x) {sample(1:0,1,prob=c(x,(1-x)))}) 
link_rX_3$connected = ifelse(link_rX_3$challenge==0,link_rX_3$prev_connected,link_rX_3$connect_update) 
link_rX = link_rX_3[,c("ego_id","alt_id","connected")] #pruning and data is updated 
 
#Reflect the degree and local gini coefficient into the node data 
link_rXc_ego = link_rX[link_rX$connected==1,] 
link_rXc_alt = link_rX[link_rX$connected==1,] 
colnames(link_rXc_alt) = c("alt_id","ego_id","connected") 
link_rXc = rbind(link_rXc_ego,link_rXc_alt) 
link_rXc = link_rXc[order(link_rXc$ego_id),] 
link_rXc$alternumber = NA 
link_rXc[1,]$alternumber = 1 
for (i in 1:(dim(link_rXc)[1]-1))  
 { 
 if (link_rXc[i,]$ego_id == link_rXc[i+1,]$ego_id)  
  { 
  link_rXc[i+1,]$alternumber = link_rXc[i,]$alternumber + 1 
     } 
 else 
  { 
  link_rXc[i+1,]$alternumber = 1 
  } 
 #print(i) 
 } 
link_rXc2 = reshape(link_rXc, direction = "wide", idvar=c("ego_id","connected"), timevar="alternumber") 
link_rXc2$degree = apply(link_rXc2[,colnames(link_rXc2)[substr(colnames(link_rXc2),1,3) == "alt"]],1,function(x) {length(na.omit(x))}) 
 
node_rX_final = 
merge(x=node_rX[,c("ego_id","round","group","initial_wealth","initial_local_gini","initial_coop","coop","wealth","growth")],y=link_rX
c2,all.x=TRUE,all.y=FALSE,by="ego_id") 

node_rX_final[is.na(node_rX_final$degree)==1,"degree"] = 0 
 
node_rX_final$avg_env_wealth = NA 
node_rX_final$local_gini = NA #needs to be updated because the social network changes at the rewiring phase 
node_rX_final$local_rate_coop = NA  
node_rX_final$rel_rank = NA  
for (i in 1:dim(node_rX_final)[1])  
 { 
 node_rX_final[i,]$avg_env_wealth = mean(na.omit(node_rX_final[node_rX_final$ego_id %in% 
node_rX_final[i,colnames(node_rX_final)[substr(colnames(node_rX_final),1,6) %in% c("ego_id","alt_id")]],"wealth"])) 

 node_rX_final[i,]$local_gini = gini(na.omit(node_rX_final[node_rX_final$ego_id %in% 
node_rX_final[i,colnames(node_rX_final)[substr(colnames(node_rX_final),1,6) %in% c("ego_id","alt_id")]],"wealth"])) 

 node_rX_final[i,]$local_rate_coop = mean(na.omit(node_rX_final[node_rX_final$ego_id %in% 
node_rX_final[i,colnames(node_rX_final)[substr(colnames(node_rX_final),1,6) %in% c("ego_id","alt_id")]],"coop"])) 

 node_rX_final[i,]$rel_rank = rank1(na.omit(node_rX_final[node_rX_final$ego_id %in% 
node_rX_final[i,colnames(node_rX_final)[substr(colnames(node_rX_final),1,6) %in% 
c("ego_id","alt_id")]],"wealth"]))/length(na.omit(node_rX_final[node_rX_final$ego_id %in% 
node_rX_final[i,colnames(node_rX_final)[substr(colnames(node_rX_final),1,6) %in% c("ego_id","alt_id")]],"wealth"])) 

 } 
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#Finalization of round X and Visualization 
#plot(graph.data.frame(link_rX[link_rX$connected==1,],directed=F)) #plot.igraph 
result[result$round==k,2:18] = 
c(length(node_rX_final$ego_id),length(node_rX_final[node_rX_final$group=="rich",]$ego_id),mean(node_rX_final$coop),mean(node_rX_final
$degree),mean(node_rX_final$wealth),gini(node_rX_final$wealth),gmd(node_rX_final$wealth),mean(node_rX_final[node_rX_final$group=="ric
h",]$coop),mean(node_rX_final[node_rX_final$group=="rich",]$degree),mean(node_rX_final[node_rX_final$group=="rich",]$wealth),gini(nod
e_rX_final[node_rX_final$group=="rich",]$wealth),gmd(node_rX_final[node_rX_final$group=="rich",]$wealth),mean(node_rX_final[node_rX_f
inal$group=="poor",]$coop),mean(node_rX_final[node_rX_final$group=="poor",]$degree),mean(node_rX_final[node_rX_final$group=="poor",]$
wealth),gini(node_rX_final[node_rX_final$group=="poor",]$wealth),gmd(node_rX_final[node_rX_final$group=="poor",]$wealth)) 

 
#For the loop 
node_import = node_rX_final 
colnames(node_import)[colnames(node_import) %in% 
c("coop","wealth","growth","degree","avg_env_wealth","local_gini","local_rate_coop","rel_rank")] = 
c("prev_coop","prev_wealth","prev_growth","prev_degree","prev_avg_env_wealth","prev_local_gini","prev_local_rate_coop","prev_rel_rank
") 

link_import = link_rX 
 
#print(paste0("Round ",k," is done.")) 
} 
 
print(result) 

  
 
3.4. Replication of the agent-based simulations 
 
AN wrote the R codes shown in Section 3.3. HS wrote the equivalent codes using Python 2.75, 
which extracted the same results shown in Extended Data Figs. 8 and 9 (not shown).  
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4. Video for network dynamics illustration  
 
To illustrate the dynamics of inequality, wealth, cooperation, and interconnectedness (degree) in the 
present experiments, we created a video file of selected sessions (Supplementary Video 1). 
 
 
5. Code and data availability 
 
The programming code as well as the experimental data are stored and available upon request at 
Yale Institute for Network Science Data Archive. 
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