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Abstract

Background: Magnetic resonance imaging (MRI) and positron emission tomography (PET) scans are widely used in breast
cancer practice despite unproven benefits. We examined the extent to which social contagion is associated with adoption
of these imaging modalities.
Methods: We used Surveillance, Epidemiology, and End Results–Medicare to construct peer groups of physicians who shared
patients during a baseline period when these imaging modalities were starting to disseminate into practice (2004–2006) and
determined the potential impact of these peer groups during a follow-up period (2007–2009). For non-early-adopting surgeons
(whose patients did not receive MRI/PET during baseline), we used hierarchical logistic regression models to examine the
effect of their peer group’s baseline use on their use of MRI/PET during the follow-up period, adjusting for patient characteris-
tics and hospital MRI/PET use.
Results: For MRI, there were 6424 women diagnosed in the follow-up period assigned to 986 non-early-adopting surgeons.
During baseline, 9.3% of women received an MRI, varying across peer groups from 0% to 81%. Women assigned to surgeons
whose peers had the highest rate of baseline MRI use were more likely to receive MRI compared with women whose surgeons’
peers did not use MRI (24.9% vs 10.1%, adjusted odds ratio [OR]¼2.47, 95% confidence interval [CI]¼1.39 to 4.39). Physician
peers were associated with uptake of PET imaging (OR for highest vs lowest baseline peer group PET use¼2.04, 95% CI¼1.24
to 3.36).
Conclusions: The phenomenon of social contagion may offer opportunities to better understand how new approaches to
cancer care disseminate into clinical practice.

The cost of cancer care is expected to continue rising steeply
and is projected to reach $158 billion by 2020 (1). While new
tests and treatments are a major driver of cancer costs (2), little
is known about the factors that drive diffusion of new modal-
ities into routine cancer care. Traditional models hold that a
combination of patient demand, evidence, provider preferences,

and health system factors influence provider behavior. While
there is some evidence that these factors influence uptake of
new technologies, they do not fully explain the observed varia-
tions in practice (3–6). In order to improve the value of cancer
care, it is crucial to identify novel mechanisms of the dissemina-
tion of cancer management strategies.
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The theory of social contagion offers an innovative perspec-
tive for understanding the adoption of innovation in cancer care.
The interpersonal context in which individuals are embedded
influences their interactions with everything from pathogens to
ideas, based on contact with their peers (7). Social contagion
theory posits that this contact is quantifiable and predictable:
Social contagion has been shown across a wide variety of behav-
iors and traits, including obesity (8), smoking (9), and happiness
(10). Early work suggests that social contagion also impacts
physician behavior (11–14). However, prior research has rarely
used population-based data based on clinical encounters to con-
struct physician networks, or incorporated social network ana-
lytic techniques (15,16).

The diffusion of advanced imaging technologies such as mag-
netic resonance imaging (MRI) and positron emission tomogra-
phy (PET) scans into cancer care provides an opportunity for
studying the potential impact of social contagion on the adoption
of a new technology. These advanced imaging technologies have
been adopted rapidly into breast cancer practice, despite
uncertain benefits (17–21). First introduced in breast cancer
around 2000, the use of perioperative MRI among Medicare bene-
ficiaries increased to 25% in 2008–2009 (22); PET scan use grew to
more than 10% by 2006 (23). Though preoperative MRIs have a
higher sensitivity for detection of additional breast lesions,
randomized studies have not demonstrated survival differences
(24,25), and concerns have been raised about the association
between MRI and more aggressive surgical care and overdiagno-
sis (22,26), leading the American Society of Breast Surgeons to
recommend against their routine use (27). The American Society
of Clinical Oncology has recommended against routine PET scans
for breast cancer with a low risk of metastasizing based on retro-
spective studies (28).

To better understand why expensive and unproven modal-
ities are disseminating into cancer practice, we explored whether
physician patient-sharing networks were linked with the uptake
of advanced imaging technology. We identified physician peer
groups—representing clusters of physicians who frequently
share patients with one another—and tested whether these peer
groups were longitudinally associated with the adoption of MRI
and PET. Because of the relative lack of data regarding the effec-
tiveness of these tests, the decision to order them is likely based
on clinical factors and physician preference, which may be influ-
enced by interactions with peers and hospital standards and
practice patterns. We hypothesized that physicians who were in
peer groups with early adopters of MRI/PET scans would be more
likely to subsequently use these technologies than physicians
who were in groups without any early-adopting peers. We fur-
ther sought to delineate the relative contribution of physician
peer groups compared with patient, surgeon, hospital, and geo-
graphic region in the uptake of MRI/PET imaging.

Methods

Overview

We conducted a retrospective study in which we constructed
physician peer groups during 2004–2006 (“baseline”) and exam-
ined subsequent adoption of advanced imaging technologies
during a follow-up period (2007–2009). These time periods were
chosen to reflect a period early in the adoption curve followed
by rapid uptake (21–23). Our primary exposure was the propor-
tion of patients assigned to each peer group who received MRI/
PET during the baseline period. Among surgeons who did not

have any patients who received MRI/PET during baseline, we
examined the association between their peer groups’ MRI/PET
use during the baseline period and their patients’ corresponding
MRI/PET use during follow-up (Figure 1).

Data Source and Study Sample

We used the Surveillance, Epidemiology, and End Results (SEER)–
Medicare linked database, which includes patient demographic
and tumor-specific cancer registry data as well as Medicare
claims. The Yale Human Investigations Committee determined
that this inquiry did not constitute human subjects research;
internal review board approval was not needed.

In order to construct peer groups, we included patients with
a first diagnosis of in situ or localized breast cancer during the
baseline period (2004–2006), as well as a 5% sample of female
Medicare beneficiaries without cancer. We incorporated this

Figure 1. Illustration of peer groups within a single hospital referral region.
An example of peer groups within a single hospital referral region is shown in
(A). Surgeons are represented by circles, other physicians by squares, and shared
patients by lines. Colors denote different peer groups, and the location is deter-
mined by social distance using the Fruchterman-Reingold layout. A single peer
group is shown in (B). Surgeons who were early adopters of positron emission
tomography (PET) scans are represented by solid circles, and non-early-adopting
surgeons are represented by outlined circles.
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heterogenous group in order to more fully capture patient-
sharing ties and potential referral patterns. In constructing peer
groups, we excluded women with breast cancer who met any of
the following criteria: stage IV disease, breast cancer not the
first or only primary cancer, histology not consistent with epi-
thelial origin, younger than age 66 years or older than age 94
years, unknown month of diagnosis or diagnosis reported on
autopsy or death certificate, or not continuously enrolled in
Medicare Parts A and B from one year prior to diagnosis through
either one year after diagnosis or until the time of their death (if
they died within one year). Women from the 5% random sample
of Medicare beneficiaries without cancer were required to fulfill
the same age and Medicare enrollment criteria as the cancer
patients and were randomly assigned an index date, which was
used analogously to the date of diagnosis.

When evaluating MRI and PET use, we constructed a sample of
breast cancer patients who fulfilled the above inclusion criteria
but who were diagnosed during the follow-up period (2007–2009).
We additionally excluded women who did not receive surgery and
those with in situ disease. Finally, because we were interested
in assessing the impact of social contagion among non-early-
adopting surgeons, we limited the sample to patients cared for by
surgeons who did not have any patients receiving MRI/PET during
the baseline period (non–early adopters).

Construction of Provider Peer Groups

Our peer groups were constructed using women diagnosed
during the baseline period. We included all surgeons, medical
oncologists, radiation oncologists, radiologists, and primary care
providers (PCPs; including obstetricians/gynecologists) who billed
for care during the three months prior to diagnosis (or the index
date for women without cancer) to the nine months following.
Two providers who both billed for care delivered to the same
patient were considered to have a patient-sharing tie (16,29).

Within each hospital referral region (HRR), we identified peer
groups of physicians who most frequently shared patients with
one another using the Girvan-Newman method (30–33). In this
approach, physician ties that have the highest betweenness
scores are iteratively removed and a goodness-of-fit test is maxi-
mized (34,35). This approach places each physician within an
HRR into mutually exclusive groups that we term “peer groups.”
We included physicians who cared for at least five patients and
only counted two providers as linked to one another if they
shared two or more patients. These thresholds helped optimize
peer group stability.

Patients were assigned to a peer group based on the surgeon
who performed their definitive cancer surgery. We excluded
peer groups with fewer than two surgeons. For each peer group,
we calculated the proportion of baseline patients who received
an MRI or PET scan during the perioperative period (three
months before diagnosis through three months after surgery).
We defined non-early-adopting surgeons as those who did not
have any baseline patients who received MRI/PET and examined
the subsequent use of MRI/PET among their patients diagnosed
in the follow-up period; this definition was constructed sepa-
rately for each imaging technology, so that non-early-adopting
MRI surgeons might have used PET and vice versa.

Variables

Our main outcomes were the receipt of MRI and PET during
the perioperative period among patients diagnosed during the

follow-up period and assigned to non-early-adopting surgeons.
Our primary exposures were the baseline rates of MRI/PET uti-
lization among the surgeon’s peer group. Patient covariates
included age, race, marital status, and area-level median house-
hold income. Tumor characteristics included size, nodal status,
stage, hormone receptor status, grade, and laterality.
Comorbidity in the 12 months through one month before diag-
nosis was measured using a modified list of the conditions sug-
gested by Elixhauser et al. (categorized as 0, 1 to 2, or "3) (36,37).
We included whether someone had a PCP visit in the 12 months
through one month prior to diagnosis as a proxy for access to
care.

To account for potential variation in practice patterns across
hospitals, surgeons were assigned to the hospital where they
billed for inpatient care for the plurality of their assigned patients
(38). Similar to peer group exposure, we calculated the proportion
of patients assigned to each hospital (via their surgeon) who
received MRI/PET during the baseline period.

Statistical Analysis

We summarized the characteristics of the baseline patients,
physician peer groups, and non-early-adopting surgeons. Among
patients diagnosed during the follow-up period whose surgeons
were not early adopters of MRI/PET, we compared the character-
istics of women who did and did not receive MRI/PET using chi-
square tests.

To test the hypothesis that non-early-adopting surgeons
are influenced by their peer group, we estimated separate hier-
archical generalized linear models for MRI and PET, where the
primary exposure was the peer group’s baseline MRI/PET use (39).
Peer group use in baseline was categorized to allow for nonlinear
associations and tested for effect using overall (Wald) tests.
Models controlled for patient sociodemographic and clinical char-
acteristics and the baseline hospital rate of MRI/PET use. These
models included random effects for the surgeon, peer group, and
HRR to account for clustering of data. We attempted to estimate
models with an additional hospital-level random effect, with
hospital assignment crossed with peer group membership, but
these failed to converge under a broad range of assumptions,
estimation methods, and starting values. Multiple imputation
with 20 imputations was used to account for missing data (40).

To assess the proportion of overall variance in MRI/PET use
among patients of non-early-adopting surgeons in the follow-up
period that was explained by peer groups, we fit cross-classified
null models that estimated surgeon-, peer group–, hospital-, and
HRR-level variance without adjustment for any covariates; these
models included crossed effects for hospital and peer group (41).
We then calculated the proportion of variance explained by each
level, under the assumption that the patient-level variance was
r2¼ p2/3; confidence intervals were constructed for percentage
explained using simulation (42).

All statistical tests were two-sided, and a P value of less
than .05 was considered statistically significant.

Results

The peer groups were constructed using 141 513 patients (29 643
women who were diagnosed with breast cancer during the
baseline period and 111 870 noncancer patients) and 26 479
physicians (2644 surgeons) across 118 HRRs. These physicians
were assigned to 679 peer groups. Patients were assigned to
peer groups based on the surgeon who performed their cancer
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surgery. Of the 679 peer groups, 178 and four groups were
excluded because no patients were assigned during the baseline
and follow-up periods, respectively; an additional 201 were
excluded because they had fewer than two surgeons. The final
sample included 1369 surgeons in 296 peer groups who treated
14 542 women diagnosed with breast cancer during the baseline
period and 12 549 women diagnosed with breast cancer during
the follow-up period.

Peer groups had a median of 56 physicians (interquartile
range [IQR]¼ 33–87) with a median of six surgeons (IQR¼ 3–9)
and 34 baseline patients who underwent breast cancer surgery
(IQR¼ 18–64) (Table 1). There was a median of 4.5 peer groups
per HRR (IQR¼ 3–8). Of the 14 542 patients diagnosed with breast
cancer during baseline, 9.3% received an MRI and 8.9% received
a PET scan (Supplementary Table 1, available online). The pro-
portion of women diagnosed during the baseline period who
received MRI/PET varied widely across peer groups, from 0% to
81% for MRI and from 0% to 64% for PET scans.

MRI Adoption

We identified 6424 women diagnosed during the follow-up
period assigned to 986 non-early-adopting surgeons. Although
none of these surgeons’ patients received an MRI during the
baseline period (by definition as non–early adopters), 14.3% of
their patients received an MRI during the follow-up period.
Women who received an MRI during the follow-up period were
more likely to be younger, white, and married and have fewer
chronic conditions and higher area-level household income
compared with those who did not receive an MRI (Table 2).
Women assigned to surgeons whose peer groups had the high-
est rate of baseline MRI use (>10% of patients received MRI)
were more likely to receive MRI compared with patients whose
surgeons’ peer groups did not have any baseline MRI use (24.9%
vs 10.1%) (Figure 2A).

These differences in receipt of MRI remained statistically
significant in models that adjusted for patient clinical and demo-
graphic factors as well as for the hospital rate of MRI use (odds
ratio [OR] for >10% vs 0% peer group MRI use¼ 2.47, 95% confi-
dence interval [CI]¼ 1.39 to 4.39) (Table 3; Supplementary Table 2,
available online). Women whose surgeons’ peer groups were in
the second highest category of MRI use (5%–10% of patients) were
also statistically significantly more likely to receive MRI than
women whose surgeons were in the lowest group (OR¼ 2.14, 95%
CI¼ 1.32 to 3.47) (Table 3). Peer group explained 6.6% (95% CI¼ 2.3
% to 17.6%) of the variation in MRI use during the follow-up
period, compared with 10.7% (95% CI¼ 5.8% to 18.2%) for the

surgeon, 8.6% (95% CI¼ 3.2% to 20.9%) for the hospital, and 7.0%
(95% CI¼ 3.1% to 15.2%) for hospital referral region (Table 4).

PET Adoption

Approximately 10.4% of the 5316 women who met inclusion cri-
teria during the follow-up period received a PET scan. Women
who were younger, did not have a prior PCP visit, or had larger
tumors, node-positive or hormone receptor–negative disease,
and higher stage and grade were more likely to receive a PET
scan (Table 2). In unadjusted analyses, women diagnosed in the
follow-up period were more likely to receive PET scans when
their surgeons’ peer groups had the highest baseline rate of PET
use (>10% of patients) compared with those whose surgeons
had the lowest rate of PET use (0% of patients; 17.7% vs 8.9%)
(Figure 2B).

In adjusted models, women whose surgeons’ peer groups
had the highest baseline rate of PET use were statistically signif-
icantly more likely to receive PET compared with women whose
surgeons were in a peer group that did not use PET during the
baseline period (OR¼ 2.04, 95% CI¼ 1.24 to 3.36) (Table 3). The
other categories of baseline peer group PET use were not statis-
tically significantly associated with subsequent PET use. Peer
group explained 6.8% (95% CI¼ 2.7% to 15.1%) of the variation in
subsequent PET use compared with 3.4% (95% CI¼ 0.5% to
18.8%) for the surgeon and 5.3% (95% CI¼ 1.2% to 20.6%) for the
hospital (Table 4). Models that included a random effect for the
hospital referral region failed to converge.

Discussion

We found that the rate of imaging in a surgeon’s peer group was
linked with their subsequent adoption of MRI and PET scans.
Physician peer groups provide a novel way to investigate the
diffusion of innovation, a key component of rising cancer costs.
Our study builds on prior work applying social network analyses
to insurance claims data by focusing on the diffusion of innova-
tion among peer groups. Our previous work showed that sur-
geons were more likely to adopt brachytherapy when their
peers were early adopters, though this work did not situate
these connections within the larger context of patient-sharing
peer groups (15). Past research employing cross-sectional study
designs has found statistically significant variation in practice
patterns across peer groups for cancer treatment, complica-
tions, and costs of care (30,31). We extend this work by looking
at how this variation may impact subsequent care delivery
using a longitudinal approach.

There are four main factors affecting the speed of diffusion:
characteristics of the innovation, communication channels through
which individuals learn about the innovation, time, and character-
istics of the social structure (11). Though we are unable to determine
mechanisms using claims data, it is plausible that a physician’s
peer group can influence many of these factors. Peer groups may
reflect formal and informal communication channels, and the shar-
ing of clinical experiences may suggest the necessity or effective-
ness of the imaging modality.

Prior work has validated that pairs of physicians who share
more patients with one another are more likely to report know-
ing one another, and peer groups may include physicians
directly and indirectly (eg, surgeons who are connected to the
same medical oncologist) connected to one another (29). Among
women diagnosed in the baseline period, a quarter had claims
for more than one surgeon. However, physicians in the same

Table 1. Characteristics of 296 baseline peer groups used in analysis*

Characteristic Median IQR

No. of doctors 56.0 33.0–87.0
No. of patients 34.0 17.5–63.5
No. of medical oncologists 4.0 2.0–6.0
No. of primary care providers 28.0 14.0–48.0
No. of radiologists 15.0 7.0–24.0
No. of radiation oncologists 2.0 1.0–5.0
No. of surgeons 6.0 3.0–9.0
MRI use, % 3.2 0.0–9.2
PET use, % 6.3 2.1–13.4

*IQR¼ interquartile range; MRI¼magnetic resonance imaging; PET¼positron
emission tomography.

A
R

T
IC

LE

4 of 8 | JNCI J Natl Cancer Inst, 2017, Vol. 109, No. 8

http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djw330/-/DC1
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djw330/-/DC1
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djw330/-/DC1


Table 2. Characteristics of follow-up patients used in analysis

Characteristic

MRI sample* (n¼ 6424) PET sample† (n¼ 5316)

Did not receive MRI Received MRI
P‡

Did not receive PET Received PET
P‡No. (%) No. (%) No. (%) No. (%)

No. 5506 918 4763 553
Age, y <.001 <.001

66–69 1134 (20.6) 316 (34.4) 1060 (22.3) 165 (29.8)
70–74 1295 (23.5) 280 (30.5) 1164 (24.4) 139 (25.1)
75–79 1282 (23.3) 190 (20.7) 1088 (22.8) 121 (21.9)
80–84 1050 (19.1) 94 (10.2) 869 (18.2) 81 (14.6)
85–94 745 (13.5) 38 (4.1) 582 (12.2) 47 (8.5)

Race <.001 .25
White 4778 (86.8) 836 (91.1) 4215 (88.5) 483 (87.3)
Black 498 (9.0) 54 (5.9) 344 (7.2) 50 (9.0)
Other 230 (4.2) 28 (3.1) 204 (4.3) 20 (3.6)

Marital status <.001 .52
Married 2307 (41.9) 487 (53.1) 2088 (43.8) 254 (45.9)
Unmarried 3054 (55.5) 408 (44.4) 2496 (52.4) 282 (51.0)
Unknown 145 (2.6) 23 (2.5) 179 (3.8) 17 (3.1)

Income, $ <.001 .43
<33 K 1373 (24.9) 130 (14.2) 820 (17.2) 109 (19.7)
33 K–40 K 949 (17.2) 102 (11.1) 806 (16.9) 94 (17.0)
40 K–50 K 1330 (24.2) 260 (28.3) 1192 (25.0) 130 (23.5)
50 K–63 K 953 (17.3) 233 (25.4) 947 (19.9) 106 (19.2)
"63 K 901 (16.4) 193 (21.0) 998 (21.0) 114 (20.6)

Comorbid conditions <.001 .06
0 2818 (51.2) 553 (60.2) 2537 (53.3) 281 (50.8)
1–2 2031 (36.9) 296 (32.2) 1715 (36.0) 194 (35.1)
"3 657 (11.9) 69 (7.5) 511 (10.7) 78 (14.1)

Primary care provider visit .23 .03
No 390 (7.1) 55 (6.0) 320 (6.7) 51 (9.2)
Yes 5116 (92.9) 863 (94.0) 4443 (93.3) 502 (90.8)

Tumor size, cm .32 <.001
<2 3378 (61.4) 582 (63.4) 3140 (65.9) 186 (33.6)
2–5 1847 (33.5) 289 (31.5) 1440 (30.2) 288 (52.1)
>5 253 (4.6) 36 (3.9) 167 (3.5) 66 (11.9)
Missing 28 (0.5) 11 (1.2) 16 (0.3) 13 (2.4)

Node positive .21 <.001
No/unknown 4201 (76.3) 683 (74.4) 3803 (79.8) 234 (42.3)
Yes 1305 (23.7) 235 (25.6) 960 (20.2) 319 (57.7)

Stage .20 <.001
I 3116 (56.6) 524 (57.1) 2947 (61.9) 122 (22.1)
II 1813 (32.9) 315 (34.3) 1456 (30.6) 229 (41.4)
III 577 (10.5) 79 (8.6) 360 (7.6) 202 (36.5)

Hormone receptor status .14 <.001
Negative 773 (14.0) 115 (12.5) 584 (12.3) 132 (23.9)
Positive 4425 (80.4) 771 (84.0) 3954 (83.0) 405 (73.2)
Missing 308 (5.6) 32 (3.5) 225 (4.7) 16 (2.9)

Grade .02 <.001
1 1412 (25.6) 238 (25.9) 1294 (27.2) 66 (11.9)
2 2331 (42.3) 423 (46.1) 2111 (44.3) 213 (38.5)
3–4§ 1517 (27.6) 221 (24.1) 1171 (24.6) 256 (46.3)
Missing 246 (4.5) 36 (3.9) 187 (3.9) 18 (3.3)

Tumor laterality .76 .70
Right-sided 2707 (49.2) 459 (50.0) 2362 (49.6) 284 (51.4)
Left-sided/ unknown§ 2799 (50.8) 459 (50.0) 2401 (50.4) 269 (48.6)

Baseline peer group imaging use, MRI;PET, % <.001 <.001
0;0 2382 (43.3) 269 (29.3) 981 (20.6) 96 (17.4)
#2;#3 701 (12.7) 62 (6.8) 854 (17.9) 68 (12.3)
2–5;3–5 938 (17.0) 153 (16.7) 1044 (21.9) 117 (21.2)
5–10;5–10 971 (17.6) 264 (28.8) 1178 (24.7) 120 (21.7)
>10;>10 514 (9.3) 170 (18.5) 706 (14.8) 152 (27.5)

(continued)
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peer groups did not necessarily discuss advanced imaging tech-
nologies with one another and were not invariably aware of the
imaging studies their shared patients received. An overlapping

explanation for our findings is that peer groups reflect shared
clinical contexts, which may provide a platform for social inter-
action as well as delineate available resources, constraints, and
incentives (43). Because SEER-Medicare data do not have prac-
tice identifiers or participation in tumor boards, we relied on
hospital assignment as a way to adjust for shared contexts,
albeit incompletely. Adding baseline hospital MRI/PET utiliza-
tion attenuated but did not eliminate the associations between
peer group and adoption. Homophily—or the tendency for peo-
ple with similar characteristics to form connections—has been
demonstrated using patient-sharing approaches and may also
help explain our findings (16,44). However, our finding of a lon-
gitudinal relation between baseline use and subsequent adop-
tion, which is the first such demonstration to our knowledge,
suggests that the influence of physicians by their peers may be
playing a role.

We only observed an association with PET in the highest
compared with the lowest baseline peer group use whereas our
findings for MRI were more consistent. This may not be surpris-
ing given our focus on surgeons. In our clinical experience,

Table 2. (continued)

Characteristic

MRI sample* (n¼ 6424) PET sample† (n¼ 5316)

Did not receive MRI Received MRI
P‡

Did not receive PET Received PET
P‡No. (%) No. (%) No. (%) No. (%)

Baseline hospital imaging use, MRI;PET, % <.001 <.001
0;0 3413 (62.0) 396 (43.1) 1790 (37.6) 174 (31.5)
#3;#4 490 (8.9) 71 (7.7) 1163 (24.4) 111 (20.1)
3–7.5;4–10 983 (17.9) 258 (28.1) 1115 (23.4) 122 (22.1)
>7.5;10–25 620 (11.3) 193 (21.0) 684 (14.4) 143 (25.9)
N/A;>25 11 (0.2) 3 (0.5)

*MRI sample includes patients who were diagnosed during the follow-up period whose surgeon did not use MRI during baseline. MRI¼magnetic resonance imaging.
†PET sample includes patients who were diagnosed during the follow-up period whose surgeon did not use PET during baseline. PET¼positron emission tomography.
‡P values represent two-sided global (Wald) tests.
§Categories are combined because of the Centers for Medicare and Medicaid Services prohibition against displaying cell sizes<11.
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Figure 2. Patient-level magnetic resonance imaging (MRI) and positron emission
tomography (PET) scans according to peer group–level MRI/PET use. A) Shows MRI
use during the follow-up period according to baseline peer group MRI use. PET use
during the follow-up period according to baseline peer group PET use is shown in
(B). MRI¼magnetic resonance imaging; PET¼positron emission tomography.

Table 3. Adjusted association between baseline peer group–level
MRI/PET use and follow-up patient-level MRI/PET use*

Baseline peer group use, % OR (95% CI) P†

MRI

0 ref .01
#2 1.31 (0.63 to 2.73)
2–5 1.45 (0.85 to 2.47)
5–10 2.14 (1.32 to 3.47)
>10 2.47 (1.39 to 4.39)

PET

0% ref .004
#3 0.89 (0.51 to 1.54)
3–5 1.28 (0.77 to 2.10)
5–10 0.89 (0.55 to 1.45)
>10 2.04 (1.24 to 3.36)

*Adjusted for baseline peer group MRI/PET use, hospital MRI/PET rate, age, race,
marital status, income, comorbid conditions, primary care provider visit, tumor
size, node positivity, stage, hormone receptor status, grade, and tumor
laterality. CI¼ confidence interval; MRI¼magnetic resonance imaging;
OR¼odds ratio; PET¼positron emission tomography.
†P values represent two-sided global (Wald) tests.
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surgeons are more likely to order MRIs while PET scans are
more likely to be ordered by other practitioners such as
oncologists. It is plausible that assigning patients to peer groups
based on their medical oncologists may have yielded different
results. We also note different characteristics associated with
test ordering: MRI was likely to vary according to patient age,
race, and comorbidity whereas PET was closely linked with clin-
ical characteristics of the cancer, demonstrating different corre-
lates of utilization that may impact adoption. Further, during
the study period, regulations may have made it more difficult
for physicians to obtain PET scans, making them somewhat less
prone to peer group influence (45).

This study has several limitations. First, the extent to which
peer groups correspond to actual physician interaction remains
unknown. Second, the use of HRRs for constructing peer groups
may not always correspond to how care is delivered and may
impact the creation of peer groups (46). Our use of cross-classified
models to partition variation helps account for the nested data
structure. Third, our peer groups were constructed using
Medicare fee-for-service claims data, so our findings may not be
generalizable to other patient populations. Fourth, patients were
assigned to surgeons based on treatment patterns and surgeons
were assigned to hospitals based on an established algorithm,
both of which may be subject to inaccuracy (38). Fifth, claims data
may be associated with incomplete risk adjustment, which may
be important in decisions to order imaging studies. Finally, using
observational data, we are unable to determine causality; delin-
eating the impact of shared contexts and homophily is an impor-
tant next step.

The adoption of more efficient medical practice, and the
abandonment of wasteful medical practice, is a key priority for
the US health care system. The current study suggests that
investigating the practice patterns of physician peer groups—
independent of their patients’ characteristics and hospital
assignment—can provide analytic leverage in understanding
their subsequent adoption of breast cancer imaging. Future
research is needed to further identify aspects of peer groups
that may be important for diffusion, which may include compo-
sitional features of the groups (eg, proportion of surgeons) and
structural characteristics (eg, density of connections). It is also
necessary to disentangle social contagion from shared contexts
and evaluate social contagion in smaller multispecialty teams
that jointly manage cancer care as a foundation for future
investigations and interventions.
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