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From decentralized banking systems to digital community 
currencies, the way humans perceive and use money is chang-
ing1–3, thus creating novel opportunities for solving impor-
tant economic and social problems. Here, we study Sardex, a 
fast-growing community currency in Sardinia (involving 1,477 
businesses arrayed in a network with 48,170 transactions) 
using network analysis to shed light on its operation. Based 
on our experience with its day-to-day operations, we propose 
performance metrics tailored for Sardex but also to similar 
economic systems, introduce criteria for identifying promi-
nent economic actors and investigate the interplay between 
network structure and economic robustness. Leveraging new 
methods for quantifying network ‘cyclic density’ and ‘k-cycle 
centrality,’ we show that geodesic transaction cycles, where 
money flows in a circle through the network, are prevalent and 
that certain nodes have a pivotal role in them. We analyse the 
transactions within cycles and find that the economic turnover 
of the involved firms is higher, and that excessive currency and  
debt accumulations are lower. We also measure a similar,  
but secondary, effect for nodes and edges that serve as inter-
mediaries to many transactions. These metrics are strong 
indicators of the success of such mutual credit systems at 
individual and collective levels.

From new transaction technologies, such as blockchain and 
mobile payment mechanisms1,2, to novel implementations of alterna-
tive currencies and decentralized mutual credit systems3, a plethora 
of new instruments allow people to trade without using legal ten-
der money. Of special interest are ‘complementary currencies’ (also 
known as community currencies) that have recently resurfaced and 
that aspire to stimulate depressed local economies by addressing the 
money liquidity problem. While this concept can be traced back to 
the nineteenth century, the penetration of the (mobile) Internet and 
the emergence of sophisticated digital credit management platforms 
(http://www.cyclos.org/) render modern complementary currency 
systems particularly attractive, as they can be used to support busi-
ness-to-business trading (http://www.wir.ch/), promote sustainable 
and local consumption (http://bristolpound.org/) and even facili-
tate cooperation in sharing-economy applications4.

Despite their importance for the economy and society, we cur-
rently lack a clear understanding of the operation of such systems. 
For instance, what are their salient economic and structural fea-
tures? How can we quantify the performance of these closed econo-
mies as a whole, or characterize the individual performance of their 
members? Which of the members play a crucial role in the system’s 
endurance and wealth-creation capacity? How can we assess the 

trust that permits use of the currency beyond bilateral-only trading 
(and that contributes to functional economies)? What are the net-
work properties of such systems and are there any network effects 
such as those observed in other economic systems? The answers to 
these questions cannot rely solely on stylized theoretical models but 
require an in-depth analysis of a real alternative economy. Hence, 
we investigate these issues using a novel and complete data set from 
Sardex (http://www.sardex.net/), a community currency launched 
in Sardinia in 2010 as a response to the financial crisis and currently 
considered one of the most successful in the world5,6.

Sardex uses an electronic-only complementary currency, is 
based on a decentralized system implementation without a bank, 
and aims to serve as a means of exchange. It is a ‘closed’ economy 
in the sense that the currency is not directly exchangeable with the 
official currency in Italy (that is, the euro), and cannot be used out-
side of Sardinia. For instance, a company that is located (or, moves 
subsequently) outside of Sardinia is not allowed to participate in 
the network. However, Sardex is pegged to the euro with a ratio 
of 1:1 to avoid the need for price discovery. This is essentially a 
‘mutual credit’ (or, zero-sum) system in the sense that every trans-
action induces a credit surplus for the seller and an equal debt 
for the buyer, while the aggregate credit accumulation across all 
members is zero; that is, there is no credit deficit or surplus in the  
economy at any given time. This creates network externalities 
among ostensibly independent transactions that involve different 
(even distant) actors.

Sardex Spa is the legal entity that monitors the market and ensures 
the secure operation of the electronic ledger. The system includes 
businesses representing almost all sectors of the Sardinian economy, 
spanning the entire island. When a business joins Sardex it obtains 
a credit line based on the committed capacity of resources it brings 
into the system. This commitment is expressed in euros and is noted 
in the contract signed by the business. The goal of the commitment 
is twofold. It ensures the businesses will not have unwanted Sardex 
credits, and that there will be enough commodities and services 
to render Sardex an attractive market place. While the businesses 
can trade also in euros (outside the network) and are free to decide 
to what extent they will be involved in Sardex transactions, they 
must abide by certain trading rules. For instance, the prices they 
charge in Sardex should be equal to the respective charged prices in 
euros. Each Sardex member can leave the network, as there are no 
exit barriers, under the condition that it brings its balance to zero, 
namely by selling (if it is negative) or buying (if positive) commodi-
ties. Finally, it is important to emphasize that there is no interest 
rate, positive or negative, a design decision aiming to increase the 
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circulation of Sardex credit. Additional information is provided in 
Supplementary Note 1.

We model the Sardex economy as a network where the nodes 
are businesses and the edges the currency flow among them. 
We perform a thorough network analysis that sheds light on the 
operation of this large-scale digital economic system. We also 
introduce analytic performance and robustness metrics for the 
economy, and centrality metrics for identifying prominent nodes. 
We particularly focus on cyclical geodesic transaction motifs, 
namely ‘cycles’—where the beginning and end of a series of trans-
actions is the same entity. Such cycles are necessary to sustain the 
continuing flow of money and also to suppress excessive debt or 
credit accumulation (which is one of the major causes of failures 
of these systems). We also perform a secondary analysis, focusing 
on ‘betweenness’ of nodes and edges, which measures the extent 
to which they act as transaction intermediaries in Sardex. The 
insights we obtain are not only relevant to complementary cur-
rencies, but also to a range of collaborative platforms with similar 
operational principles. Our analysis thus sheds light on possible 
network-related mechanisms pertaining to how humans adopt 
and use novel monetary instruments.

The spatial characteristics of the Sardex network and the trad-
ing relations across different cities can be seen in Fig. 1a, while a 
network instance for the capital city of Cagliari is shown in Fig. 1b.  
In our analysis, each individual trader is modelled as a node, 
where the node degree represents the number of its trading part-
ners, while the weighted directed edges capture the aggregate cur-
rency flow from each buyer to each seller in the time interval of 
interest. The Sardex network has a skewed degree distribution, as 
depicted in Fig. 1c, with an average degree equal to 18.6 partners 
(median =​ 10; s.d. =​ 26.9) and a maximum of 259. After the fast-
growing phase of Sardex in the first three months of this two-year 
period, several graph properties remained relatively unchanged. For 
example, the average directed path length (that is, the average length 
of the sequence of pair-wise directed ties between any two nodes) 
was approximately 3.5 (median =​ 3; s.d. =​ 0.9), and the diameter 

of the network stabilized at 10. Similarly, the clustering coefficient 
was 0.14 and the transitivity was approximately constant and equal 
to 0.10. Sardex has a single network component and low average 
path length, similar to small-world7 and scale-free networks8, but 
has a high clustering coefficient (12 times higher than Erdos–Renyi 
networks9 but 5 times lower than small-world graphs). A detailed 
descriptive analysis can be found in Supplementary Note 1.

Our network analysis here focuses on cycles and cyclic trans-
actions; that is, sets of transactions where a group of traders buy 
and sell from each other in a cyclic fashion. The length k of a cycle 
is defined as the number of edges that it comprises (see Fig. 2a). 
A reciprocal (bilateral-only) transaction is a cycle of length k =​ 2, 
while lengthier cycles involve more participants. Obviously, a lack 
of cycles in dynamic flow (here, credit) networks with no sink or 
source nodes results in high accumulations of surpluses and debts, 
disrupting in practice the credit balance (see Fig. 2b). Moreover, the 
existence of cycles is crucial to distinguish economically healthy 
mutual credit systems from speculative pyramid or Ponzi schemes 
that result in isolated and exploited nodes. Besides, there is an intui-
tive relationship between the system’s overall performance on the 
one hand, and the existence of transaction cycles, especially the 
lengthier ones, on the other. That is, lengthier cycles need more 
time to be completed (counting the time the currency needs to 
return to, and be redeemed by, the initial seller), meaning, in prac-
tice, that they involve a higher trust of the participants towards the 
currency; this enables the solution of a larger set of ‘double coinci-
dence of wants’ problems and helps to yield a functional economy 
(Supplementary Fig. 5).

The idea of cyclic network motifs, and procedures for identifying 
cycles, have been previously described10,11, but here we propose and 
implement a set of analytical metrics for assessing the presence of 
cycles at the network level, and for quantifying the contribution of 
each node to cyclic transactions. We first introduce the cyclic den-
sity, which captures the extent to which the network overall contains 
cycles. This metric is defined as the ratio of the total number of 
cycles in the trading graph over the expected number of cycles in a 
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Fig. 1 | A representation of the Sardex transaction network from 1 January 2013 to 31 December 2014. a, Each super-node represents the collection of 
Sardex nodes located within a city or town. The node size is proportional to the number of traders in that city, and edges capture transactions between 
different locations; N =​ 276 cities; E =​ 48,170 transactions. b, The Sardex transaction network within the capital city of Cagliari (N =​ 137 businesses; E =​ 498 
partnerships). c, In-, out- and total degree distribution of the Sardex network on a log-log scale (N =​ 1,477 businesses; E =​ 13,753 partnerships). Map in a 
adapted from http://d-maps.com.
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properly defined null model. The higher the value of the cyclic den-
sity, the higher the potential performance of the trading network 
in all likelihood. Building on earlier work10, we also introduce the 
notion of k-cycle node centrality, which quantifies the portion of the 
network’s trading cycles of length k ≥​ 2 in which a node participates. 
The larger the value of the k-cycle centrality, the more important 
that node probably is for the performance of the system. For exam-
ple, removing a node with a 5-cycle centrality value of 0.5 will break 
down 50% of the cycles of length 5 in the whole network, and this 
will increase the likelihood of having isolated nodes with high debts 
or surpluses. Note that it is known that severed trading relationships 
are often difficult and time consuming to replace12, even more so in 
closed economic systems such as Sardex. Finally, we introduce the 
k-cycle node coverage metric, which quantifies, for each node, the 
overlap of its cycles, and hence how many different nodes appear in 
its cycles. Two nodes may have the same k-cycle centrality but dif-
ferent k-cycle coverage, as shown in Fig. 2c.

To assess the performance of this mutual credit system, we pro-
pose and quantify two metrics: the aggregate volume of transac-
tions (or turnover) of the system and the credit healthiness for each 
of its members. The first metric has been used by practitioners to 
describe the system-level performance of various community cur-
rencies. The second, node-level metric captures excessive and pro-
longed credit (positive) or debt (negative) accumulations by traders. 
In particular, nodes that have had a high credit or debt for many days 
during the time interval of interest are those with undesirable credit 
healthiness (examples are provided in Supplementary Note 2). Such 
accumulations indicate inactive members who pose a threat to the 
robustness of the system, either because they immobilize credit sur-
pluses or because they are incapable of reducing their debts.

Leveraging our approaches to identifying and quantifying trad-
ing cycles, we then explore two fundamental questions. At the net-
work level: does Sardex have many cycles, and are there nodes with 
a pivotal role in them? At the cycle level: are cycles associated with 
the above performance metrics, and what is the economic activ-
ity within the cycles? Moreover, we investigate these questions for 
cycles of different length: is it preferable in such local economies 
to have small trading relations, involving two or three nodes, or 
lengthier cycles, involving transactions among four or five nodes in 
cycles involving ‘unseen’ others?

First, we examine cyclic density and credit healthiness at the 
overall network level, across time. Based on our experience from 
the day-to-day management of the system, we consider as unhealthy 
the state of having debt or credit higher than 90% of a node’s capac-
ity (its credit line). Figure 3a depicts the network’s cyclic density 
for different sizes of the Sardex graph, which has a higher number 
of cycles compared to different null models. For the latter, we have 
used an analytical formula that quantifies the expected number of 
cycles in a graph built by randomizing the edges of the observed 
Sardex network while preserving its in/out-degree distribution 
(henceforth referred to as reshuffled-degree graphs)13–15. We have 
also used an Erdos–Renyi9 graph and a small-world7 graph as null 
models, and further verified the results by a Z-test using a popula-
tion of 100 reshuffled-degree graphs, as shown in Fig. 3b. Regarding 
the performance metrics, the aggregate volume of new transactions 
conducted in every month increases with time, as shown in Fig. 3c.  
Moreover, Fig. 3d depicts the portion of unhealthy nodes at the 
end of each month; interestingly, we observe a 50% reduction of 
this quantity during the two-year operation of the market. In other 
words, as the network grows, Sardex traders not only manage to 

C3
C4

C5

b

e

f

g

h

c

a d

b

c

a

C2

d

–20

+20

+10

–10

+0

a b

a b c

d

e

–570
400

170

320

80
+0

+320

+250

80

+0
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increase the volume of their transactions, but they do so in a fashion 
that avoids prolonged, excessive debt or credit accumulations.

Regarding the role of nodes in Sardex cycles, we see that the 
distribution of the k-cycle centrality has a heavy tail, with a few 
nodes participating in a large percentage of cycles, while many 
nodes do not participate in any cycle. These results depart sub-
stantially from the cycle centrality distribution in the null mod-
els and reveal that a small subset of nodes plays a crucial role in 
the economy as, for example, their removal would increase idle 
currency accumulations (prolonged surpluses or debts). We also 
correlated the cycle centrality with other node centrality met-
rics—that is, the degree and betweenness centrality16—to assess 
the information load of this new metric. We find that the cor-
relation of cycle centrality with betweenness centrality (r =​ 0.70, 
P <​ 0.001) is comparable to the correlation of betweenness with 
degree centrality (r =​ 0.77, P <​0.001). Additionally, we find that 
the correlation of the cycle centrality with degree centrality can 
be high (r =​ 0.92, P <​0.001) for certain ranges of values of these 
centralities. Interestingly, however, a closer look at the scatter plots 
(Supplementary Fig. 9) reveals that nodes with small-to-medium 
values of cycle centrality have a large range of betweenness and 
degree centrality. This suggests that cycle centrality does carry 
additional information. Finally, we calculated the k-cycle coverage 
distribution in Sardex and found substantial variation and non-
redundancy (see Supplementary Fig. 10).

Next, we turn our focus to the transactions within cycles to assess 
the association of a firm’s being in cycles with its economic perfor-
mance. First, we explore the role of cycles at the edge level using a 
dyadic generalized linear regression model17. The construction of 
the transaction graph and the enumeration of cycles is performed 
for each year separately, and the analysis is conducted jointly on 
both samples with proper adjustments. Figure 4a shows the model 
estimates. We observe that an increase of 1 s.d. of the number of 
cycles of length k =​ 2 is associated with an increase of 5% in the edge 
transaction volume (b = 0.05; 95% confidence interval (95% CI), 
0.03, 0.07; P <​ 0.001), and that this increases up to 12% for cycles of 
length k =​ 5 (b = 0.10; 95% CI, 0.07, 0.14; P <​ 0.001). Interestingly, 
we find also that the betweenness centrality of the edges has a com-
parably positive impact on their transaction volume, meaning that 
edges participating in many chains of transactions (of any length, 
open or closed) have higher performance (b = 0.09; 95% CI, 0.06, 
0.12; P <​ 0.001). Note that the impact of cycles of length k =​ 5 was 
comparable to that of betweenness. As shown in Fig. 4a, a similar 
association was not observed for paths (that is, unclosed cycles) of 
the same respective length. The latter are defined as sequences of 
connected nodes where no node appears more than one time, and 
we have used only the paths that are non-nested, and, thus, inde-
pendent of cycles and longer paths.

Finally, we explore the credit healthiness of the nodes that are 
involved in many cycles. We used an ordinary least-squares (OLS) 
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model with the credit healthiness of each business as the dependent 
variable (see Methods). Figure 4b shows the estimates of these mod-
els. We observe that businesses with many trading partners (degree) 
have a lower average absolute balance; that is, better credit healthiness. 
Businesses that are part of longer cycles also have lower average bal-
ance. While an increase of 1 s.d. in the number of cycles of length k =​ 2 
is associated with an improvement of 14% in the trader’s credit health-
iness (by lowering the average absolute balance; b =​ −​0.17; 95%CI, 
−​0.21, −​0.12; P <​ 0.001), this impact increases to 30% for cycles of 
size k =​ 4 (b =​ −​0.38; 95% CI, −​0.44, −​0.33; P <​ 0.001) and size k =​ 5 
(b =​ −​0.41; 95% CI, −​0.47, −​0.35; P <​ 0.001). Similar to the edge-level 
analysis, we find that the betweenness centrality of the nodes improves 
substantially their credit healthiness (b =​ −​0.09; 95% CI, −​0.14, −​0.03; 
P =​ 0.003). However, the betweenness effect is smaller than the impact 
of cycles; that is, nodes that are involved in many (and lengthier) 
cycles are healthier even compared to nodes with high betweenness 
centrality. As hypothesized, and shown in Fig. 2b, the number of non-
closed paths passing through a node is associated with an increase in 
its average absolute balance; that is, a decrease in its healthiness.

The findings at the edge and node level resisted a long battery 
of robustness analyses accounting for dependencies and alterna-
tive modelling approaches (see Supplementary Note 3). In addition, 
we indirectly compared the impact of cycles of different lengths by 
using a stepwise statistical analysis (gradually adding the different 
cycles), and observed an increase in model fit that supports the 
importance of lengthier cycles. Identical conclusions are reached if 
we compare the coefficients and the fit of the different independent 
models. We also compared the cycles and the paths by consider-
ing the respective aggregate metrics—that is, number of cycles of 
all lengths and number of paths of all lengths that an edge belongs 
to—and the results were aligned with the above findings. Finally, 
we explored whether the observations about performance within 
cycles relate to the geographic proximity of the transacting nodes. 
Interestingly, we found that traders within cycles are not more 
frequently co-located than traders that participate in non-nested 
paths; and, more important, we found that edges across different 
cities (both for cycles and paths) have slightly higher weights (see 
Supplementary Note 2). Therefore, the association of cycle length 
and economic performance that we observe is not rooted in geo-
graphic co-location of the traders.

Alternative financial services are of increasing importance.  
They leverage recent technological advances and aspire to address 

fundamental economic needs, especially in rural and under-devel-
oped areas where affordable banking services are often lacking. At 
the same time, they constitute promising laboratories for the study 
of salient aspects of social and economic life, such as how humans 
perceive and use money, or trade and collaborate with each other2,18. 
And studying such monetary systems allows us to revisit fundamen-
tal questions regarding the emergence and performance of various 
monetary instruments19,20 using quantitative analysis of detailed 
digital transaction traces21. Furthermore, credit systems such as 
Sardex are increasingly relevant for emerging sharing-economy ser-
vices4 that rely on decentralized trading and cooperation platforms. 
In these systems, more often than not, the exchange of goods and 
services takes place using some kind of a coupon-based system. In 
all of these cases there is a need for (and already use of) an account-
ing mechanism similar to Sardex, so as to facilitate the participants’ 
interactions. Hence, the ideas and metrics proposed here are appli-
cable elsewhere too.

Information from monetary instruments that trace out paths 
through an economy is not commonly available22. But the availabil-
ity of data such as ours, with a panopticon view of a complete and 
defined economic system, which is increasingly possible21, allows 
us to examine the flow of money in a new way. We find that Sardex 
shares common features, such as the small-world property, with 
social or technological networks; but it also has distinct proper-
ties such as the prevalence of cycles. We show that cyclic motifs are 
increasingly over-represented in the Sardex economic network and 
that a subset of nodes plays a central role in the existence of cycles. 
This result verifies the common intuition about the importance of 
circular transactions in an economy, which is even more crucial 
(and structurally necessary) in these closed mutual-credit econo-
mies. We then quantified important economic metrics, namely edge 
weight (the transaction volume between traders) and node credit 
healthiness (a measure of net balances), for the traders involved in 
many cycles. Our findings suggest that cycles are positively associ-
ated with system performance at both global and individual levels 
and that these associations are larger for the longer cycles. Besides, 
such associations are not seen (or are much smaller) for linear paths 
of equal length to such cycles.

These findings resisted a battery of robustness checks. 
Nevertheless, we do not make any formal causality claim about the 
effects of cycles on economic performance because, from a statisti-
cal point of view, this cannot be strictly proved. Namely, a proper 
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randomized controlled trial is unfeasible in this setting and hence 
we would need to rely on either observational studies or natural 
experiments for leveraging instruments. With either of these meth-
odological approaches, valid causal inference could be pursued at 
the level of granularity of the economy (having whole economies 
as units of analyses) or at the level of businesses (within a single 
economy). Unfortunately, there is only one economy of this type at 
this stage of development, and analysis at the business level raises 
treatment interference issues for which there are no straightforward 
solutions, though we use spatial regression models and other ana-
lytic tools here (see Supplementary Note 3).

Still, our network modelling and analysis approach reveals that 
complex types of embeddedness in economic systems—and not just 
dyadic (or even triadic) interactions between two traders engaged 
in direct exchange—are associated both with individual actors’ eco-
nomic performance and with the economic success of the system as 
a whole. Previous experimental work has shown that the structure 
of networks can affect the value individuals can extract from net-
works, whether their interactions are cooperative or monetary19,23–25. 
In the economy, such studies have focused on the topological prop-
erties of the world trade web26, or of interbank payment networks27. 
Our data involve different types of economic actors, a much smaller 
geographic scale, and include detailed temporal and geodesic infor-
mation. Of course, it is important to emphasize that fully disentan-
gling the Sardex flows is practically impossible because the currency 
units do not have identification numbers22.

The significance of diverse motifs in complex systems has been 
evaluated in various situations in recent decades, and several tech-
niques for quantifying them have been devised15. Cyclic motifs 
are of crucial importance in a variety of settings that range from 
bartering- and sharing-economy applications4 to gift exchange net-
works or even to kidney exchange systems28. Nevertheless, cycles 
are uncommonly investigated, especially in directed graphs such 
as ours. One earlier study provided a closed-form expression that 
relates the number of expected cycles in a directed graph with its 
in/out-degree distribution, and it showed that cycles in food web, 
power grid, metabolic and other networks are under-represented 
compared with respective random graphs10,13. Our analysis builds 
on these earlier works and provides a systematic approach not only 
for assessing the prevalence of cycles in observed networks, but also 
for quantifying which nodes contribute to this phenomenon, using 
the new k-cycle centrality and k-cycle coverage metrics.

The existence of cycles has been, mainly, associated with negative 
effects such as instability in dynamic systems. It has been shown that 
short or long feedback loops can destabilize systems by reinforcing 
oscillations and amplifying undesirable perturbations. For example, 
a study of biological and technological networks found that directed 
cycles are under-represented, and it hypothesized that this property 
emerged through an evolutionary process rewarding stable struc-
tures; extensive simulations supported this argument11. Similarly, 
another study used an analytical model to prove that cyclic network 
motifs can amplify risk contagion effects in financial systems such 
as the interbank loan networks29. In this case, a small asset devalu-
ation in a bank might trigger a cascade of equity reassessments to 
its lenders, and, through a cyclic path of successive interbank links, 
further deteriorate the equity of this bank. Contrary to these results, 
we show here (using actual data) that the system’s performance is 
improved within the cyclic transactions. This is not surprising if one 
realizes that Sardex cycles capture cooperative relationships, and the 
credit obligations are not bilateral but rather towards the community. 
Namely, each debtor can pay its debt by selling products and services 
to any other Sardex member, and, similarly, each creditor can spend 
its credit buying from any other member. Hence, perturbations and 
node failures can be amortized and accommodated by the system.

Furthermore, Sardex cycles perhaps reflect trust in the currency 
and in the ability of Sardex members to sustain this complementary  

market, and hence the cycles reinforce this positive effect. It is pos-
sible to see the positive effect of cycles as due to the fact that money 
in Sardex is essentially a cooperation-fostering medium, while, in 
other financial networks, it is treated as a commodity. Finally, it is 
interesting to note that our findings suggest also that betweenness 
centrality plays a very important role in both of the considered 
performance metrics and mainly in increasing the edge weight. 
Intuitively, this might be related to the fact that, in such closed sys-
tems, the economic activity can be improved if certain links act as 
strong conduits transferring credit among distant groups of nodes, 
and this is, by definition, the role of these high-betweenness edges.

The existence and relevance of cycles also suggests possible strat-
egies for policy makers to evaluate, for example, strategically fos-
tering cycles by brokering introductions to trading partners. While 
outsiders to a system intervening in it may not be able, for example, 
to change the betweenness centrality of actors, they might be able 
to change cycle centrality to similar effect by brokering a few intro-
ductions to foster the creation of cycles. Moreover, with respect to 
the credit healthiness of firms, for nodes with the same turnover 
(that is, weighted degree), increasing the number of trading part-
ners (degree) improves healthiness since it splits the load more 
evenly (more, smaller transactions are creating the same wealth). 
On the other hand, if we want to actually increase the turnover in 
the system, adding more transactions over the existing trading rela-
tionships (that is, the existing edges) deteriorates the balance unless 
these transactions are part of cycles.

Trust of the users towards a complementary currency such as 
Sardex is probably the most important element for its function, 
as it enables the currency’s adoption and utilization beyond bilat-
eral-only trading. The notion of trust here is more intricate than 
in classical macroeconomic models30 as it includes the trust of the 
traders towards the Sardex network itself (which is not backed by 
any official state), the trust that there will be enough resources of 
interest to buy in the future in this closed economy and the trust 
that the other traders will repay their debts. Cycles in networks may 
be relevant to economic success in part because the existence of 
many—and, in particular, lengthy—cycles indicates the trust of the 
traders in this closed economy with respect to all of these factors. 
Hence, money itself may not be enough to induce trust or robust-
ness of exchange among strangers in groups31 and cycles may also 
be needed. Indeed, from a structural, geodesic point-of-view, cycles 
play a crucial role in the flow of money in a mutual credit system. 
Moreover, and more generally, cycles may be relevant to other phe-
nomena within graphs, such as the flow of germs or information, 
beneficially retarding the flow of the former and harmfully sup-
pressing the flow of the latter. Cycles are also surely relevant to the 
controllability of a graph32. Understanding the practical relevance 
of cyclic motifs is an opportunity for further work. While individu-
als might control their bilateral economic ties, they have less con-
trol over their long-range interactions. Yet, such unseen network 
features may matter, both for individuals themselves and for their 
group as a whole.

Methods
Data sets and network model. Our data set includes detailed information for 
all Sardex transactions conducted from 1 January, 2013 until 31 December, 2014 
(see Supplementary Note 1). Additionally, the data set includes information about 
each firm’s category, capital commitment, location and date of joining the system. 
This time interval constitutes the fastest expansion period of Sardex, which, by the 
end of 2014, yielded an aggregate turnover of 38.81 million euros. We do not have 
data about the businesses’ transactions in euros, nor about their overall economic 
activities (in euros). We have removed the transactions among businesses and their 
own employees since the latter have different qualitative and quantitative features. 
Namely, employees conduct much smaller transactions than businesses and, most 
importantly, they cannot have debt since they are not assigned a credit line. The 
entire population of the businesses in Sardex has been used, and therefore no 
statistical methods were employed to predetermine sample. The authors have the 
necessary approval to analyse and publish these data.

Nature Human Behaviour | VOL 2 | NOVEMBER 2018 | 822–829 | www.nature.com/nathumbehav 827

http://www.nature.com/nathumbehav


Letters NaTure Human Behaviour

We have defined the Sardex network as follows: each node represents a Sardex 
business, and each directed weighted edge captures the aggregate flow of currency 
from the buyer business (source node) to the seller business (destination node) 
during the time period of interest. This currency flow can be the result of one or 
more transactions. We construct and analyse the Sardex network on a yearly basis. 
That is, we split the network into two distinct networks; one for the first year, and 
one for the second year. The reason for following this approach is twofold. First, 
we do not assume that the effect of transaction edges persists forever, and hence we 
consider only cycles within a certain time interval (12 months). Second, we have 
found that the cycles of length k =​ 5 are created, on average, in approximately 230 d, 
which renders the annual separation more representative (Supplementary Fig. 5). 
Following this methodology, the Sardex network had 877 nodes and 5,962 edges in 
2013, 1,353 nodes and 9,916 edges in 2014 and 1,477 nodes and 13,753 edges for the 
overall period of two years (2013–2014). Mathematically, Sardex is modelled as a 
weighted directed graph G =​ (N,E), where N is the set of Sardex businesses and E the 
set of edges representing their transactions during the time period of interest. Every 
edge (i,j)∈​E with weight eij captures the total amount of currency that i has paid to j.

Formulae. Following previous modelling approaches33, we define an elementary 
path puv of length k as an ordered set of nodes puv =​ (u =​ u1,u2,…​,uk+1 =​ v), such that 
(ui,ui+1) ∈​ E for i ∈​ [1,k]. Next, we define an elementary cycle cuu as an elementary 
path in which the first and the last nodes are identical. A cycle of length |cuu| =​ k 
contains k edges and k different nodes. Two elementary cycles are considered 
distinct if the one is not a cyclic permutation of the other, and we have considered 
only such cycles in our study. We define the set of cycles of length k that include 
nodes as Pk(n) =​ {cuu: n ∈​ cuu,u ∈​ N, |cuu| =​ k}, and we also define the set of all 
cycles of length k in the graph Pk(G) =​ {cuu: u ∈​ N, |cuu| =​ k}. We introduce the k-
cycle centrality of node n as the portion of k-cycles that node belongs to; that is, 
Cyk(n) =​ |Pk(n)|/|Pk(G). By definition, k-cycle centralities, for all nodes and all 
values of k, lie in the interval [0,1]. If a graph does not have any cycles of length 
k, we set the k-cycle centrality equal to zero for all nodes. Finally, we define the k-
cycle coverage Cvk(n) =​ Mk(n)/|Pk(n)|(k – 1), where Mk(n) is the number of different 
nodes in the k-cycles that traverse node n.

The k-cyclic density and (overall) cyclic density for a network G =​ (N,E) are 
defined as follows:
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where T is the upper bound of the length of cycles we enumerate, and its value 
depends on the context. In this study, we use T =​ 5; that is, we count up to 5 cycles, 
as the average creation delay of longer cycles expands beyond the duration of the 
data set. The cyclic density metric takes a negative value when the observed cycles 
are less than in the null model, a zero value when it is exactly the same and positive 
values for graphs that exhibit more cycles. Note that we use a logarithmic scale 
as the number of cycles grows exponentially with the number of nodes. Also, the 
‘max’ operator in the denominator ensures the metric is properly defined even  
for small-sized graphs. The enumeration of cycles can be implemented using 
previous methods33.

Models. For the edge-level analysis in Fig. 4a, we have used dyadic generalized 
linear models with a random effect at the node level17 predicting the volume of 
transactions between two businesses (that is, over a certain edge). Due to skewness 
of distribution, volume was log transformed and treated as a normal distribution. 
Confidence intervals were measured using two-tailed tests. We controlled for 
the type of businesses involved (using the business category) as well as for their 
lifespan (that is, the duration since they joined the network), and we compared 
the results with the number of paths of the same length crossing that edge. Our 
analysis is on an annual basis. That is, the construction of the transaction graph 
and the enumeration of cycles is performed for each year separately, and the 
statistical analysis is conducted jointly on both samples with proper adjustments. 
For the node-level analysis in Fig. 4b, we have used an OLS model with the 
credit healthiness of each business as the dependent variable. Due to skewness 
of distribution, credit healthiness was log transformed and treated as a normal 
distribution. Confidence intervals were measured using two-tailed tests. We 
controlled for the business type, its weighted degree (turnover) and its lifespan; and 
we again compared the results with the impact of paths of the respective length.

Several alternative modelling approaches have been employed, including a 
random effects model for the node-level analysis, that account for relational and 
temporal node dependencies with appropriate corrections for the standard errors 
(Supplementary Note 3). We have also implemented various measures for assessing 
and reducing multicollinearity issues. We repeated our study for each year 
separately, so as to consider the time dimension, and we also employed a lagged 
model that studies the impact of cycles created in year one on the performance 
metrics in year two, and reached the same conclusions about the transactions and 
credit conditions within cycles. We also tested the robustness of the above findings 

when we employ only the time-sequential cycles; that is, those cycles with edges 
that are created in strict time sequence. We controlled for the k-cycle coverage of 
nodes and edges and did not observe any qualitative difference in our findings. 
Finally, we also employed a set of non-parametric, non-linear models, such as 
random forest and support vector machine models, which, however, did not 
produce interpretable results. Details for all models and methods are available in 
Supplementary Note 3.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. Code for the main models and figures that are presented in 
the paper and the Supplementary Information is provided at the Supplementary 
Software report, and also available upon request from the corresponding author.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon reasonable request, subject to approval by Sardex Spa 
and based on the confidentiality agreement of Sardex Spa with its clients.
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