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Summary. The identification of causal peer effects (also known as social contagion or induction) from observational data
in social networks is challenged by two distinct sources of bias: latent homophily and unobserved confounding. In this paper,
we investigate how causal peer effects of traits and behaviors can be identified using genes (or other structurally isomorphic
variables) as instrumental variables (IV) in a large set of data generating models with homophily and confounding. We use
directed acyclic graphs to represent these models and employ multiple IV strategies and report three main identification results.
First, using a single fixed gene (or allele) as an IV will generally fail to identify peer effects if the gene affects past values
of the treatment. Second, multiple fixed genes/alleles, or, more promisingly, time-varying gene expression, can identify peer
effects if we instrument exclusion violations as well as the focal treatment. Third, we show that IV identification of peer effects
remains possible even under multiple complications often regarded as lethal for IV identification of intra-individual effects,
such as pleiotropy on observables and unobservables, homophily on past phenotype, past and ongoing homophily on genotype,
inter-phenotype peer effects, population stratification, gene expression that is endogenous to past phenotype and past gene
expression, and others. We apply our identification results to estimating peer effects of body mass index (BMI) among friends
and spouses in the Framingham Heart Study. Results suggest a positive causal peer effect of BMI between friends.
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1. Introduction
We develop instrumental variable (IV) methods for the esti-
mation of causal peer effects using longitudinal dyadic data
from a social network. A peer effect (social contagion, induc-
tion) occurs when a behavior, trait, or characteristic of an
individual’s peers (those to whom she is connected, or alters)
affects her own (the ego’s) health behavior. While evidence ex-
ists of associations of observed traits (phenotypes and behav-
iors) among groups of individuals (such as obesity (Christakis
and Fowler, 2007), smoking (Christakis and Fowler, 2008),
and alcohol use (Rosenquist et al., 2010)), experiments to
prove that such associations are causal are often difficult or
impossible due to practical or ethical limitations on random-
ization, albeit with a few exceptions (Wing and Jeffery, 1999;
Centola, 2010; Fowler and Christakis, 2010).

Observational analyses may suffer from selection bias due
to non-random assignment of treatment. The challenges are
magnified in network contexts as confounding takes several
structurally different forms. In addition to the spread of health
traits because of peer influence, clusters of similar individuals
may form due to both homophily (“birds of a feather flock

together”) and unmeasured common causes affecting socially
connected individuals (confounding). Because each of these
phenomena may lead to correlations between the phenotypes
of connected individuals (Christakis and Fowler, 2007; Shalizi
and Thomas, 2011), methods to parse these associations apart
are required.

One approach to causal inference with observational data
emulates randomized trials by using an instrumental variable
(IV), a variable that influences exposure but, conditional on
the exposure, has no influence on the outcome (Angrist, Im-
bens, and Rubin, 1996). However, the literature on the use of
IVs to estimate peer effects is limited. Randomized dorm-
room assignments have been used to estimate peer effects
among college students (Sacerdote, 2001) and military re-
cruits (Carrell, Fullerton, and West, 2009). In other settings,
covariates averaged over neighboring observations (contextual
variables) have been used as IVs for peer effects (Fletcher,
2008).

Directed acyclic graphs (DAGs) can clarify the identifi-
cation problems of IV analysis for peer effects by focusing
attention on the causal relationships among variables to
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better align the identification strategy with scientific judg-
ments (Pearl, 2009). We use DAGs to (1) identify subtle
dependencies that complicate estimation of peer effects, (2)
succinctly notate causal data generating models, and (3)
prove theorems about identifiability conditions for causal
peer effects. We illustrate our methods using networks with
a simple structure consisting of disjoint pairs of individuals
(dyads), with no influence (interference) between dyads.

Our motivating application concerns peer effects in the
Framingham Heart Study (FHS) (Christakis and Fowler,
2007), specifically the utility of using recently sequenced ge-
netic data to develop IVs for peer effects on body mass index
among friends and spouses. The appeal of genes as IVs is
that they are inherently randomized by a naturally occur-
ring process, are assigned at conception, and are not directly
visible and hence, unlikely to directly influence other individ-
uals. Several recent methodological papers discuss Mendelian
randomization as IVs (Didelez, Meng, and Sheehan, 2010;
Vansteelandt et al., 2011; Palmer et al., 2012) but none con-
sider peer effects. Our paper explores promises as well as pit-
falls facing the use of Mendelian randomization as IVs in the
study of peer effects.

In Sections 2–4, we introduce DAGs to develop several in-
creasingly general causal models for peer effects involving IVs
to account for latent homophily and unmeasured confounding.
Our models accommodate several other features often consid-
ered obstacles to identifying peer effects, including pleiotropy
(genes affecting multiple individual characteristics), popula-
tion stratification, and gene-based homophily. Section 5 out-
lines the potential outcomes representation of our preferred
causal model. Estimation of these models of peer effects us-
ing longitudinal dyadic network data is described in Section 6.
Section 7 describes the FHS network of friend and spouse ties
and evaluates the linked genetic alleles as potential IVs for
peer effects. Section 8 concludes with a discussion.

2. Directed Acyclic Graphs (DAGs)

We use DAGs to encode the structural (i.e., causal) assump-
tions of our causal models and prove their identifiability.
DAGs represent variables as nodes and the direct causal ef-
fects between them as edges. Missing edges denote sharp null
hypotheses of no direct causal effect. All DAGs considered
in this paper are so-called causal DAGs (Pearl, 2009), which
are assumed to contain all observed and unobserved common
causes in the process. Paths are non-intersecting sequences
of adjacent edges, regardless of the direction of the arrows.
Causal paths between a treatment and an outcome contain
only edges that point away from treatment and toward the
outcome. All other paths are noncausal, or spurious, paths.
Variable M is a collider on a path if the path contains the
formation X → M ← Y (i.e., both edges point to M). All vari-
ables directly or indirectly caused by a given variable are
called its descendants. Brackets around a variable indicate
that the variable has been conditioned on; for example, [M].

The d-separation rule (Pearl, 1988) translates between the
causal assumptions encoded in the DAG and the associations
observable in data. A path is said to be d-separated or blocked
if (1) it contains a non-collider variable that has been condi-
tioned on, such as M in X → [M] → Y (where M is a medi-

ator) or X ← [M] → Y (where M is a common cause or con-
founder), or if (2) it contains a collider variable, X → M ← Y ,
and neither the collider nor any of its descendants has been
conditioned on. Paths that are not d-separated are said to
be d-connected, unblocked, or open. In causal DAGs, variables
that are d-separated along all paths are statistically indepen-
dent; and variables that are d-connected along at least one
path may be associated (Verma and Pearl, 1988). The crucial
point is that conditioning on a non-collider blocks the flow of
association along a path, whereas conditioning on a collider
or one of its descendants may induce an association.

Under conventional axioms (Pearl, 2009; Richardson and
Robins, 2013), causal DAGs and potential outcomes are
equivalent notational systems for predicting statistical asso-
ciations and identifying the causal effects of an intervention.
Since IV is principally an identification strategy for linear
models, we henceforth assume that the DAG represents a lin-
ear model, making no assumptions about the distribution of
the variables (e.g., joint normality).

3. Graphical IV Criteria

We apply versions of the graphical criteria for detecting IVs
for the total causal effect of treatment (variable) T on outcome
(variable) Y in linear models developed by Brito and Pearl
(2002).

Single-IV Criterion: Let D denote the DAG that represents
the assumed causal model, and let Dtest be D after removing
all edges emanating from T (Dtest represents the null hypoth-
esis of no treatment effect). Then G is an IV for the total
causal effect of T on Y conditional on a set of variables Z (the
so-called conditioning set, which may be empty) if:

(1) Z contains no descendant of T in D.
(2) There is an unblocked path between G and T in Dtest

after conditioning on Z.
(3) There is no unblocked path between G and Y in Dtest

after conditioning on Z.

The first and third conditions give the exclusion restriction:
except for the causal effect of T on Y , the IV G must be
independent of Y given Z. (However, these conditions do not
imply that G is independent of Y conditional on (T, Z)—in the
presence of an unmeasured cause of T and Y , conditioning on
T opens a path from G to Y (Hernán and Robins, 2006).) The
IV criterion generalizes to multiple treatments and multiple
IVs (IV-sets).

IV-Set Criterion: For multivariate T = (T1, . . . , TL), let
Dtest be D after removing all edges emanating from T . Then a
multivariate G = (G1, . . . , GK) is an IV-set for the joint causal
effect of T on Y conditional on a set of variables Z if:

(1) Z contains no descendant of T in D.
(2) For every l ∈ {1, . . . , L} there exists, for some k, an

unblocked path, called path l, between Gk ∈ G and
Tl ∈ T in Dtest after conditioning on Z, such that
{path1, . . . , pathL} have no nodes in common.

(3) For k ∈ {1, . . . , K} there are no unblocked paths be-
tween Gk ∈ G and Y in Dtest after conditioning on Z.
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Figure 1. Directed acyclic graph (DAG) representing the
common core of causal models for peer effects with obser-
vational data. The target of interest is the total causal ef-
fect of individual 2’s (the alter’s) phenotype on individual 1’s
(the ego’s) subsequent phenotype, Y2(1) → Y1(2). Latent ho-
mophily bias arises from implicit conditioning on the social tie
A12, which opens the noncausal path Y2(t) ← U2 → [A12] ←
U1 → Y1(2), t = 0, 1, 2. Confounding bias arises from unob-
served common causes, C12, satisfying Y2(1) ← C12 → Y1(2).
Although presented for the case when q = 2, other cases are
represented by dropping (when q = 1) or adding (when q > 2)
Ykt and the analogous edges to those involving Yk(0), k = 1, 2.
Variables U and C are unobserved, all others are observed.

It follows from condition 2 that K ≥ L for an IV-set G. Impor-
tantly, an IV-set G may exist for T even if no variable GK ∈ G

individually is a valid IV for any single variable Tl ∈ T (Brito,
2010). Note that IV sets identify not only the joint effect of
T on Y but also the direct effect of each Tl on Y not mediated
by {Tk}k �=l, which may coincide with the total causal effect of
Tl on Y .

4. Causal Models for Peer Effects in Dyads

We first present the common core of our causal models for
peer effects (on BMI for illustration) to explicate the two cen-
tral identification challenges: common cause confounding and
homophily bias. We then discuss a series of more realistic
models for peer effects and evaluate conditions under which
each model can be identified via IV analysis.

4.1. The Two Identification Problems: Confounding and
Homophily Bias

Figure 1 gives the core of our causal models for a longitu-
dinally observed population of independent dyads including
individuals 1 and 2. Let Yk(t) denote BMI, the phenotype of
interest for individual k = 1, 2 at time t and let q denote the
number of periods before the present that the tie was formed
(Figure 1 depicts the case when q = 2). Current BMI may
affect the same individual’s subsequent BMI: Yk(t−1) → Yk(t),
k = 1, 2, t = 1, . . . , q. Additionally, each individual’s present
BMI may affect the other’s subsequent BMI (peer effect);
Y2(t−1) → Y1(t), and Y1(t−1) → Y2(t), t = 1, . . . , q. We assume
there were no effects of 1 and 2 on each other prior to tie-
formation.

BMI is affected by two more types of variables, each as-
sumed to be at least partially unobserved. The first is a vec-
tor of individual-specific unobserved variables Uk, Uk → Yk(t),

(k = 1, 2, t = 0, . . . , q) such as metabolic functioning, food
preferences, etc. Second, each individual’s BMI is potentially
affected by shared environmental exposures, C12, such as local
food sources, restaurant commercials, food fads, etc. Thus,
Y2(t) ← C12 → Y1(t) for some or all of t = 0, . . . , q; Figure 1
depicts a case where C12 corresponds to an event at t = 1.
Finally, A12 represents the existence of a social tie between
individuals 1 and 2.

Taking the perspective of individual 1, the goal is to iden-
tify the total causal effect of Y2(t−1) on Y1(t); that is, the
effect of 2’s BMI at time t − 1 on 1’s subsequent BMI at
time t = 1, . . . , q. Without loss of generality, we focus on the
peer effect from t = q − 1 to t = q. In the causal model of
Figure 1, presented with q = 2, treatment Y2(q−1) and out-
come Y1(q) share three sources of association—one causal
and two spurious. First, treatment may affect the outcome
along the causal path Y2(q−1) → Y1(q), the causal effect we
aim to identify. Second, they may be associated due to un-
observed shared environmental confounding by C12 along
the unblocked non-causal paths Y2(q−1) ← C12 → Y1(q) and
Y2(q−1) ← C12 → Y1(q−1) → Y1(q). Third, and centrally for this
investigation, treatment and outcome may be associated due
to the preferential (nonrandom) formation of social ties. The
status of A12 may be affected by (U1, U2), because, for ex-
ample, people bond preferentially with others holding similar
tastes in food (homophily—“birds of a feather flock together”)
or with opposite tastes (heterophily—“opposites attract”).
This preferential formation turns A12 into a collider vari-
able. Investigating peer effects among individuals linked by
a social tie necessarily implies conditioning on the social tie.
Since A12 is a collider, conditioning on it opens the noncausal
path Y2(q−1) ← U2 → [A12] ← U1 → Y1(q), and hence induces
a noncausal association between treatment and outcome. Bias
due to falsely considering this association as causal is gener-
ically known as homophily bias (Shalizi and Thomas, 2011)
and constitutes a type of selection bias (Elwert and Chris-
takis, 2008; Elwert, 2013). This spurious association cannot
be eliminated by conditioning on any set of observed variables
if the sources of tie formation are at least partially unobserved,
and it will exist even if the causal effect of Y2(q−1) on Y1(q) is
zero. In fact, using Pearl (1995), it can be shown that com-
mon cause confounding in C12 and homophily in A12 prevent
non-parametric identification of the causal effect of Y2(q−1) on
Y1(q) under the causal model of Figure 1.

4.2. IV Identification for Various Causal Models of Peer
Effects

We now investigate the identification of peer effects despite
confounding and homophily bias in several more realistic
causal models. Figures 2 and 3 elaborate on the model in
Figure 1 in two ways: first, by explicitly adding the observed
exogeneous covariates Xk (such as gender, age, education, and
the geographic distance between ego’s and alter’s residences)
and, second, by adding Gk (such as genes or other isomorphic
variables) affecting BMI but not tie-formation for k = 1, 2. We
do not index (Xk, Uk) by t but note that these variables may
contain time-varying elements.

Figures 2 and 3 differ in only one, albeit crucial, respect.
The model in Figure 2 provides for a scenario where the
time-invariant (assigned at conception) gene G alone is the
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Figure 2. DAG involving time-invariant IV G2 for causal
estimation of Y2(q−1) → Y1(q) when t = 0, . . . , q. The variables
Xk and Uk (k = 1, 2) are observed and unobserved individ-
ual predictors of Yk, respectively, that may also affect tie-
formation. While Xk can be conditioned on Uk cannot, ne-
cessitating the use of IV-methods. When q = 1 (one follow-up
period), G2 instruments Y2(0); when q = 2 (the case presented
here), G2 instruments both Y2(1) and Y2(0); and so on until
G2 instruments Y2(q−1) . . . Y2(0). IV identification is reliant on
Y2(0), . . . , Y2(q−1) being observed so that they can be instru-
mented (if dim(G2) ≥ q) and Y2(0), . . . , Y2(q) not being causes
of A12 (i.e., they cannot contribute to homophily).

instrument, whereas Figure 3 supposes that gene expression
varies over time due to an interaction with a time-varying
covariate in X, GX. We shall refer to these as gene-alone and
gene-interaction identification, respectively.

4.2.1. Gene-alone identification. We now evaluate
whether G2 can serve as an IV for Y2(q−1) → Y1(q) under
various conditioning strategies, where Z denotes the variables
conditioned on. Figure 2 includes several different cases
based on q. We first suppose the number of periods since
tie-formation is q = 1 and then q = 2, and finally draw con-
clusions for general q. The case when q = 1 can be thought
of as estimating a single peer effect over the entire follow-up
period since tie-formation at t = 0 while other cases allow
the peer effect to be incrementalized, which is useful if there
are time-varying predictors. In this section, we again focus
on the peer effect from t = q − 1 to t = q.

Theorem 1. Assume that q = 1 in the causal model rep-
resented by Figure 2. Then G2 is an IV for the total causal
effect Y2(0) → Y1(1) conditional on Z = A12.

Proof. Condition (1) of the single-IV criterion is met be-
cause A12 is not a descendant of Y2(0). Condition (2) is met
because the path G2 → Y2(0) is a direct effect and hence is
unblocked. Condition (3) is met because all paths from G2

to Y1(1) in Dtest pass through the colliders Y2(0) and Y2(1);
since neither Y2(0) nor Y2(1) is conditioned on, and A12 is not
a descendant of either, all paths from G2 to Y1(1) in Dtest are
blocked. �

Y

Y

Y

Y

Y
U

U

Y

A

GX GX GX

GXGX GX

X
G

X
G

C

2

2

2(0) 2(1) 2(2)

2

12 12

1

1(0) 1(1) 1(2)

1

1

2(1)2(0) 2(2)

1(0) 1(1) 1(2)

Figure 3. DAG involving time-varying instrumental vari-
able (IV), GX2(t−1), assumed to be a cause of Y2(t−1) through
the interaction of G2 with a time-varying variable (e.g., age)
in X2, t = 1, . . . , q (presented when q = 2). The variables
Xk and Uk (k = 1, 2) are observed and unobserved individ-
ual predictors of Yk, respectively, that may also affect tie-
formation. While Xk can be conditioned on Uk cannot, ne-
cessitating the use of IV-methods. By conditioning on G2

and X2, the noncausal pathways from GX2(t−1) to Y1(t) (e.g.,
GX2(t−1) ← G2 → [A12] ← U1 → Y1(t)), t = 1, 2, are blocked
making GX2(t−1) a valid IV. If GX2(0) → GX2(1) is added to
the DAG, it is necessary to condition on GX2(0).

The model in Figure 2 permits conditioning on certain ad-
ditional variables.

Corollary 1. In Figure 2 with q = 1, any subset of Z =
{X2, G1, X1, Y1(0)} can be conditioned on in addition to A12

without affecting the IV identifiability of Y2(0) → Y1(1).

Proof. The single-IV criterion is met because (1) no variable
in Z descends from Y2(0); (2) is trivially met; (3) all paths from
G2 to Y1(1) in Dtest pass through the colliders Y2(0) and Y2(1),
which block these paths and are not opened by conditioning
on Z since no variable in Z descends from Y2(0) or Y2(1). �

Corollary 1 is useful because all variables in Z are asso-
ciated with the outcome Y1(1)—conditional on A12 and the
other variables in Z—such that conditioning on them will re-
duce variance in Y1(1) and lead to more precise estimates.

Gene-alone identification fails when q ≥ 2 when G2 is
univariate in Figure 2 because no amount of conditioning can
remedy several exclusion violations. For example, the open
path G2 → Y2(q−2) → Y1(q−1) → Y1(q) can only be blocked
by conditioning on Y2(q−2) or Y1(q−1); but doing so would
necessarily induce another exclusion violation by opening the
path G2 → [Y2(q−2)] ← U2 → [A12] ← U1 → Y1(q) as Y2(q−2) is
a collider on this path and Y1(q−1) descends from this collider.
However, the total causal effect of Y2(q−1) → Y1(q) can be
identified via the IV-set criterion if G2 is multivariate (e.g.,
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representing multiple genes, or multiple alleles of the same
gene, that each affect Y2(t) over t = 0, . . . , q − 1; dim(G2) ≥ q).

Theorem 2. In the causal model represented by Figure 2
with q = 2, if dim(G2) ≥ 2, then G2 is an IV set for the total
causal effect of Y2(1) on Y1(2) after conditioning on A12.

Proof. The IV-set criterion for the joint causal effect of Y2(1)

and Y2(0) on Y1(2) is met because (1) A12 does not descend
from Y2(1) or Y2(0); (2) G2 → Y2(1) and G2 → Y2(0) are open
and share no nodes (since G2 is multivariate); (3) all paths
from G2 to Y1(2) must pass through Y2(0), Y2(1), or Y2(2), which
are colliders in Dtest; since neither Y2(0), Y2(1), Y2(2), nor any
of their descendants are conditioned on, all paths from G2

to Y1(2) are blocked. Finally, since the total causal effect of
Y2(1) on Y1(2) is not-mediated by Y2(0), IV set identification
of the joint causal effect of Y2(1) and Y2(0) on Y1(2) implies
identification of the total causal effect of Y2(1) on Y1(2). �

Corollary 2. Theorem 2 generalizes to arbitrary q ≥ 2,
dim(G2) ≥ q, where G2 instruments Y2(0), . . . , Y2(q−1) with any
subset of Z = {X2, G1, X1, Y1(0)} together with A12 as the con-
ditioning set.

Proof. Directly extend the proof of Theorem 2 and Corol-
lary 1. �

The solution to the identification problem in Figure 2 when
q ≥ 2, G2 → Y2(t), t = 0, . . . , q, and dim(G2) ≥ q involves an
unusual use of IV. Whereas typically IVs are used to identify
treatment effects, here, G2 both identifies the treatment effect
and remedies the exclusion violation that would occur if the
paths Y2(t−1) → Y1(t) were not accounted for by instrumenting
Y2(t−1) for t = 1, . . . , q − 1.

Corollary 2 illustrates that G2 faces an increasing challenge
with the duration of the social tie as all values of the alter
phenotype over 0, . . . , q − 1 must be instrumented. Because
G2 has limited dimension this will eventually be impossible.
The central limitation of gene-alone identification, however,
is that it breaks down under homophily on phenotype.

Corollary 3. If Y2(t) → A12 for any t ∈ {0, . . . , q − 1} is
added to Figure 2 then G2 of any dimension is not a valid IV
to identify the total causal effect of Y2(q−1) on Y1(q), conditional
on A12.

Proof. Because A12 is a descendant of Y2(t), condition-
ing on A12 is equivalent to conditioning on Y2(t), which
opens the unblockable noncausal path G2 → [Y2(t)] ← U2 →
[A12] ← U1 → Y1(q), among others, t = 0, . . . , q − 1, represent-
ing an exclusion violation. �

Therefore, we next look beyond using genes alone as IVs.

4.2.2. Gene-interaction identification. Even though
genes themselves are not time-varying, their expression often
is. The causal model analogous to that of Figure 2 but
with time-varying gene expression is shown in Figure 3. Let
GXkt denote a variable representing individual k’s (k = 1, 2)
gene-by-age expression at time t (here the notation GX

reflects that age is an element of X). The edges Xk → GXk

and Gk → GXk are included at all periods to represent
varying gene expression due to age.

Theorem 3. In Figure 3 the effect Y2(t−1) → Y1(t), t =
1, . . . , q (the case q = 2 is presented), is identified by using
GX2(t−1) to instrument Y2(t−1) conditional on G2, X2, and
A12.

Proof. Because GX2(t−1) only affects Y2(t−1) the single-IV
criterion applies. Therefore, after conditioning on A12, G2,
and X2 an analogous argument as for Theorem 1 completes
the proof. �

Corollary 4. Under the DAG in Figure 3, Gk → A12,
GXk(t−2) → A12 and Y2(t−2) → A12 may be added for k = 1, 2,
t = 2, . . . , q without compromising IV-identification based on
GX2(t−1).

Corollary 4 (proof omitted) illustrates that exploiting time-
varying gene expression is advantageous in three ways. First,
it allows genetic homophily at (or before) t − 2, 2 ≤ t ≤ q. Sec-
ond, it allows homophily on the phenotype of interest up to
but not including t − 1. This restriction appears reasonable
given prior work suggesting that changes in physical appear-
ance (e.g., BMI) have minimal impact on tie-dissolution even
if initial similar appearance led to tie-formation (O’Malley
and Christakis, 2011). Third, the requirements for identifica-
tion do not get more onerous with q. These flexibilities cen-
trally motivate our adoption of Figure 3 as the primary causal
model in our empirical analysis.

4.2.3. Relaxing further assumptions. In observational
data settings, it is important to evaluate the extent to which a
given identification strategy is consistent with multiple plau-
sible causal models. Table 1 summarizes several substantively
important elaborations of the causal models in Figures 2 and
3, all of which consist of adding edges; that is, relaxing as-
sumptions (proofs omitted).

First, as noted previously, homophily on the phenotype at
any time is lethal for gene-alone identification with a single
IV under the model of Figure 2, but homophily on phenotype
prior to t − 1 is not lethal for identifying the peer effect from
t − 1 to t under Figure 3.

Second, G2 may be pleiotropic; that is, affect not only BMI,
but also other characteristics of the individual. In Figure 2,
G2 may additionally affect observed covariates X2 (necessi-
tating conditioning on Z = {A12, X2}) but not unobserved fea-
tures directly affecting social-tie formation; that is, G2 → U2

(because of the irreparable exclusion violation G2 → U2 →
[A12] ← U1 → Y1(q)). By contrast, in Figure 3, adding G2 →
X2, G2 → U2 and even G2 → A12 are unproblematic, as is
GX2(t−2) → U2 and GX2(t−2) → A12, t = 2, . . . , q, (but not
GX2(q−1) → U2 or GX2(q−1) → A12). Importantly, pleiotropy
on unobservables (G2 → U2) includes effects of genes on la-
tent pre-tie formation phenotype (which by virtue of being
unobserved is an element of U2). Pleiotropy on latent pre-
tie formation phenotype thus ruins IV identification only in
the case of Figure 2, but it does not ruin IV identification in
Figure 3.
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Table 1
Extensions to DAGs and their consequence when q = 2 and individual 1 is the ego

Phenomenon Effect Change to Z Applies to figure

Homophily on Yk(0) → A12 No implication 3
measured phenotype Yk(1) → A12 No remedy 2, 3
(k = 1, 2) Yk(2) → A12 No remedy 2, 3

Homophily on Gk → A12 No implication 3
measured genotype GXk(0) → A12 No implication 3
(k = 1, 2) GXk(1) → A12 No remedy 3

Pleiotropy on G2 → X2 Add X2 2
observables G2 → X2 No implication 3

Pleiotropy on G2 → U2 No remedy 2
unobservablesa G2 → U2 No implication 3

Population PopStrat12 → Add dyad 2, 3
stratificationb Gk(k = 1, 2) fixed effectsc

Inter-phenotype (X2, U2) → Y1(0) No implication 2, 3
Peer effect (X2, U2) → Y1(1) No implication 2, 3

(X2, U2) → Y1(2) No implication 2, 3

Predictor X2 → X1 No implication 2, 3
Associations X2 → C12 Add X2 2, 3

X2 → U1, U2 Add X2 2, 3

Confounding on C12 → G2 No remedy 2
genotype or C12 → GX2(1) No remedy 3
gene expression C12 → GX2(0) Add GX2(0) 3

Epigenetic Y2(0) → GX2(1) Add Y2(0) 3
Effects Y2(1) → GX2(2) No implication 3

Serial dependent GX2(0) → GX2(1) Add GX2(0) 3
gene-expression GX2(0) → Y2(1) Add GX2(0) 3

Relationship A12 → Yk(0) No implication 2, 3
status (k = 1, 2) A12 → Yk(1) No implication 2, 3

A12 → Yk(2) No implication 2, 3

aIncluding unmeasured prior phenotype, Yk(t) for t < 0 and k = 1, 2.
bShared ancestry of individuals 1 and 2.
cAdd indicator variables for each dyad to Z.

Third, population stratification describes an association be-
tween G2 and G1 based on sharing attributes due to common
ancestry (Didelez and Sheehan, 2007). To protect the exclu-
sion restriction, one should control for race and ethnicity and
ensure (to the extent possible) that members of the dyad are
not directly related (e.g., using the method in Price et al.
(2006)). However, because ethnic origin (e.g., Irish, German,
Greek) is seldom available within general racial groups, in-
cluding dyad fixed-effects is a more rigorous strategy of ac-
counting for population stratification.

Fourth, our results also accommodate inter-phenotype peer
effects; if X2 affects Y1(t), t = 0, . . . , q, the results above hold.
Even if 2’s unobserved characteristics, U2, affect Y1(t), our re-
sults continue to hold. Fifth, effects of 2’s observed character-
istics on unobserved shared environmental exposures (e.g., via
residential choice), X2 → C12, or on 1’s observed characteris-
tics, X2 → X1, have no implications. Sixth, epigenetic con-
founding on unobserved contextual factors, C12 → GX2(t−2),
t = 2, . . . , q, can be accounted for by conditioning on GX2(t−2)

under Figure 3. Even under epigenetic effects due to the

phenotype, which imply the addition of Yk(t−1) → GXk(t), t =
1, . . . , q, to Figure 3, identifiability is not affected except if
t < q then Y2(t − 1) must be added to Z.

Finally, if GX2(t−1) → GX2(t), t = 1, . . . , q, (serial depen-
dence) is added to Figure 3 it is necessary to condition on
GX2(t−2) in addition to G2 and X2 for GX2(t−1) (for t ≥ 2) to
be an IV. Therefore, GX2(t−1) must not be fully determined by
G2, X2, and GX2(t−2). Likewise, if GX2(t−1) → Y2(t) is added
to Figure 3 then GX2(t−2) must be added to Z. In summary,
the IV and IV-set criteria permit identification of peer effects
in a surprisingly large class of causal models with latent ho-
mophily and confounding.

5. Potential Outcomes Representation

From hereon, we assume the causal model of Figure 3 and its
extensions, which gives IV point identification under linear-
ity and homogeneity (Brito and Pearl, 2002). We now exhibit
model form assumptions using the potential outcomes rep-
resentation of the DAG in Figure 3. We explicitly allow for
time-varying elements of (Xk, Uk), k = 1, 2, and C12 by adding
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the subscript (t), use bold-face font to denote vectors, and use
lower-case letters to denote observed and counterfactual val-
ues of random variables.

A potential outcome Y(ṽ) is the value of an outcome Y that
would be observed if a variable V were set by intervention to
ṽ. An observed value of V is denoted v, distinguishing it from
the counterfactual ṽ. Therefore, Y1(t)(ỹ2(t−1), gx2(t−1)) denotes
the potential outcome that would result for individual 1 if
individual 2’s phenotype at t − 1 were set to ỹ2(t−1) and her
gene-expression were set to gx2(t−1).

Under the DAG in Figure 3, a causal model for the potential
outcomes of Y1(t) given the conditioning set Z(t) (which must
include G2 and X2) is

Y1(t)(ỹ2(t−1), gx2(t−1)) = α1ỹ2(t−1) + βT Z(t) + λT
1U1(t)

+ λT
2C12(t) + ε1(t), (1)

where α1, β, λ1, and λ2 are coefficients and ε1(t) is a random
error. We assume ε1(t) has constant variance, which simpli-
fies estimation, but note that the assumption can be relaxed
without affecting identification. The involvement of U1(t) and
C12(t) in (1) illustrates that causal models make no distinction
between observed and unobserved covariates. Due to the ex-
clusion restriction, gx2(t−1) is absent from the right-hand-side
of (1). Therefore, the left-hand-side of (1) may be denoted
Y1(t)(ỹ2(t−1)). Then the peer effect we seek to estimate sat-

isfies α1 = (Y1(t)(ỹ
′
2(t−1)) − Y1(t)(ỹ2(t−1)))/(ỹ

′
2(t−1) − ỹ2(t−1)) for

ỹ
′
2(t−1) �= ỹ2(t−1).

6. Dyadic Instrumental Variables Analysis

To implement IV analysis of (1), we use a two-stage least
squares (2SLS) procedure. The “first-stage” of 2SLS regresses
the endogeneous variable Y2(t−1), t = 1, . . . , q, on the IV and
the exogeneous variables in Z(t) (including gx2(t−2) and y1(t−1)

if conditioned on), yielding the regression

y2(t−1) = gxT
2(t−1)θ1 + zT

(t)θ2 + δ1(t), (2)

from which the fitted values, ŷ2(t−1), are computed. The
second-stage applies OLS to

y1(t) = α1ŷ2(t−1) + zT
(t)β + ε̂1(t), (3)

where ε̂1(t) = ε1(t) + α1(y2(t−1) − ŷ2(t−1)), estimating the peer
effect α1. Because gx2(t−1) is an IV in (2), under OLS estima-
tion ŷ2(t−1) is orthogonal to ε̂1(t) and Z(t) in (3), ensuring unbi-
ased and statistically efficient IV-based estimates. The proce-
dure generalizes to accommodate multiple heterogeneous ef-
fects such as two-period dependence (i.e., if Y2(t−2) → Y1(t))
and effect heterogeneity in observed effect modifiers (see Web
Appendix).

6.1. Variance Estimation

Standard errors are computed using results from the general
theory for 2SLS. Because the peer effects are of alter’s lagged
as opposed to contemporaneous phenotypes, the complica-
tions posed by the simultaneous involvement of the same ob-
servation as a predictor and an outcome (VanderWeele, Og-
burn, and Tchetgen Tchetgen, 2012) are avoided. To account

for repeated observations made on dyads over time, as out-
lined in the Web Appendix, we compute robust standard er-
rors based on sandwich estimators (White, 1982).

7. Friend and Spouse Peer Effect Analysis of the
FHS Network

We illustrate our methods using a novel social network dataset
constructed from the first seven health exams of the Offspring
Cohort of the Framingham Heart Study (FHS), encompass-
ing 32 years of follow-up. The Offspring Cohort includes 5124
individuals. Genetic data was available for 3462 distinct indi-
viduals, appearing in 22,361 exams (see Web Appendix).

The network ties considered here arise from participants
naming friends and spouses at their health exams. Partici-
pants typically only named a single friend at each exam, which
is likely to be the one with the most influence. Given the
stability of the Framingham population from 1971 to 2003,
approximately 50% of the nominated friend contacts were
themselves also participants in the FHS and thus provided the
same information, including BMI. Most spouses of FHS par-
ticipants were also FHS participants. We estimate our model
with a sample of 9270 unique dyads comprising spousal and
nearly disjoint friendship dyads (ignoring occasional overlap
of dyads when the same ego is named by multiple alters).

Because the fat mass and obesity gene (FTO) and the
melanocortin-4 receptor gene (MC4R) have been confirmed
through original and replication studies to be strongly asso-
ciated with obesity (Speliotes et al., 2010), we consider them
as IVs for peer effects of BMI. There is also evidence sug-
gesting that genetic effects may be moderated by a person’s
age (Lasky-Su et al., 2008), justifying consideration of age-
dependent gene expression as an IV.

Linearity is assumed for the data analysis and, moreover,
we are interested in the linear peer effect of BMI itself. How-
ever, we note that in certain applications one might instead
be interested in peer effects of obesity (BMI ≥ 30), the effect
of some other nonlinear transformation of BMI, or in the ex-
tent to which the peer effect of BMI is modified by age or
some other individual characteristic of the alter (or the ego).
While many interesting specifications could be considered, for
illustration, we have chosen to focus on a linear specification.

We adjust for ego’s gender, age, gender–age interaction,
birth era, birth year, smoking status, number of siblings, ge-
ographic distance between residential locations of ego and
alter at tie-formation, and gene–age interactions. Birth era
accounts for whether an individual was born before 1942, be-
tween 1942 and 1948, or 1948 or later to capture possible
cohort effects due to America’s involvement in World War II.
Because the offspring cohort is nearly 100% white, we do not
adjust for race.

In addition, we adjust for wave number dummies to account
for secular trends in BMI. Therefore, one can think of gene-age
expression as random with respect to exam timing. Inclusion
of alter’s smoking status provides assurance against a possible
pleiotropic effect between FTO and smoking and MC4R and
smoking.

7.1. Representation of Genes

Genetic alleles are represented in Gk, k = 1, 2, by four dummy
variables for two of the three possible states of each of FTO
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Figure 4. Fitted values of BMI, Ŷi(t), across the i = 1, . . . , n

individuals in the FHS sample are obtained from a regression
of BMI on exam (categorical), gender, birth era (categorical),
year born, marital status, number of siblings, and smoking
status. The smooth curves are computed using a generalized
additive spline regression model with smoothing factors ju-
diciously chosen to capture local trends but not overfit the
data.

(states AA, AT, TT) and MC4R (states CC, CT, TT). The A
and C alleles have been recognized by geneticists as the risk-
alleles of FTO and MC4R, respectively. Having two copies
of the risk-allele is the riskiest state followed by the one-
copy heterozygous state. Therefore, we also include a fifth
dummy variable corresponding to FTO = AA and MC4R =
CC. While we could instrument 5 waves of phenotypes using
gene-alone IV identification (Figure 2 and Corollary 2), we
can relax more assumptions under gene–age interaction IV
identification (Figure 3, Theorem 3, and Table 1). The age-
dependent association of the FTO gene with BMI is clearly ev-
ident in Figure 4 (see Web Appendix for the same for MC4R).

7.2. Dyadic Peer Effect Analyses

We estimate several statistical models, starting with one that
is consistent with the causal model of Figure 3, as well as sta-
tistical models obtained by adding several of the Exclusions in
Table 1. The four reported here condition on G1, X1, and X2

and are distinguished by whether GX2(t−2) was excluded (as
permitted in Figure 3) or conditioned on (to accommodate
GX2(t−2) → GX2(t−1)) and by whether Y1(t−1) was excluded
or conditioned on (only allowed under Figure 3) to possibly
improve precision. Because population stratification is a ma-
jor concern in analyses involving genes and phenotypes, we
include dyad fixed effects in all analyses. Thus, the five gene–
age interaction variables of the alter (individual 2) are the
IVs for Y2(t−1). We also performed analyses with the analo-

gous five gene–age2 interaction variables as additional IVs;
results remained essentially unchanged (not shown). We per-
form separate analyses for friends and spouses and use robust
variance estimators to account for repeated observations over
time (Section 6.1).

7.3. Estimated Peer Effects

The IV estimates are consistent with positive BMI peer effects
among friends and spouses (Table 2). Under the causal model
of Figure 3 with Z(t) = (GX1(t), X1(t), X2(t)), the estimated
BMI peer effect among friends (row 1) is positive and statisti-
cally significant (α̂1 = 0.888, 95% CI (0.063, 1.713)), whereas
the BMI peer effect among spouses (row 5) is positive but not
statistically significant (α̂1 = 0.099, 95% CI (−0.324, 0.522)).
In all other specifications (i.e., relaxations of Figure 3), the es-
timated BMI peer effects among friends and spouses are not
statistically significant, although point estimates remain in
the expected positive direction in most models. For many IV
specifications, the corresponding OLS estimates differ appre-
ciably, consistent with the presence of unobserved confound-
ing and homophily bias in the OLS specifications.

The imprecision (and resulting lack of significance) of many
of our IV estimates is owed to relatively weak first stages. F -
statistics indicate that only the causal models of Figure 3 (see
GX2(t−2) excluded rows of Table 2) have first stages at which
IV strength is modest at best by conventional standards (e.g.,
under row 1, F5 = 2.150 for friends F5 = 4.064 for spouses)
(Stock, Wright, and Yogo, 2002). Note, specifically that condi-
tioning on GX2(t−2) to account for possible serial dependence
in gene expression (i.e., if GX2(t−2) → GX2(t−1) is added to
Figure 3) results in a very weak first stage (e.g., F5 ≤ 0.268
for spouses). This explains the noisy estimates of all rows
with GX2(t−2) as additional covariates in Table 2. Therefore,
the absence of GX2(t−2) → GX2(t−1) is crucial to IV peer-effect
estimation using FHS data. Other specifications (results not
shown) yield first stages of similar strength. To improve pre-
cision, one might collect more data to increase sample size;
or one might (we believe implausibly) assume the absence of
unobserved population stratification, which would permit re-
moval of the dyad fixed effects and result in a stronger first
stage (results not shown).

8. Conclusion

We derived IV methodology for the estimation of peer effects
using longitudinal data. A key methodological distinction of
our approach, compared to past observational approaches, is
that we account for latent common causes and homophily. An
important theoretical finding is that latent homophily places
severe demands on IVs. Genes have appeal as IVs due to their
inherent randomness, lack of visibility to peers, and ongoing
influence on the phenotype. However, ongoing influence on
phenotype is problematic to time-invariant IVs such as ge-
netic alleles as all past values of the alter’s phenotype post
tie-formation must be instrumented (even if they only have
an indirect effect on ego’s BMI). However, if variation in gene
expression across age is used as an IV, the dimension of the
instrumented variable does not need to increase with the du-
ration of the social tie.

Using two genes widely recognized as having the strongest
effects on BMI or obesity, we explored BMI peer effects among
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Table 2
Dyadic peer effect analysis of lag alter BMI using time-varying gene–age expression as an instrument

Discretionary Z(t) terms IV Regression (2SLS)a Regression (OLS)

GX2(t−2) Y1(t−1) F5
b Estimate 95% CI Estimate 95% CI

Nominated friend

Exclude Exclude 2.150 0.888 0.063 1.713 −0.011 −0.121 0.100
Exclude Covariate 1.731 0.874 −0.031 1.779 0.009 −0.071 0.089
Covariate Exclude 1.181 0.133 −0.796 1.062 −0.086 −0.193 0.021
Covariate Covariate 1.144 −0.003 −0.911 0.906 −0.077 −0.181 0.028

Spouse

Exclude Exclude 4.064 0.099 −0.324 0.522 0.066 0.039 0.094
Exclude Covariate 4.351 0.101 −0.287 0.488 0.032 0.008 0.055
Covariate Exclude 0.268 −0.102 −1.855 1.652 0.050 0.017 0.082
Covariate Covariate 0.181 0.906 −1.832 3.643 0.023 −0.006 0.051

aZ(t) = (GX1(t), X1(t), X2(t)) are exogeneous covariates and GX2(t−1) is an IV in all IV analyses. The elements of Xk(t), k = 1, 2, are:
gender, age, gender–age interaction, birth era, birth year, smoking status, number of siblings, and (for k = 1 only) the geographic
distance between residential locations of ego and alter at tie-formation. All models include dyad fixed effects. GX2(t−2) and Y1(t−1) are
added to Z(t) as indicated in the two left-most columns.
bThe F -statistic is for the overall effect of the IV, GX2(t−1), in the first-stage equation. The critical value of the Cragg-Donald F -statistic,
which quantifies the power of an IV, at the 20% level ranges from 6.71 to 6.77 across the models.

pairs of friends or spouses. Our analyses, which attempted to
account for all sources of confounding, estimated large peer
effects but lacked significance in all but one case.

Continued research on the use of genes as IVs for peer ef-
fects is motivated by the fact that, if this approach is suc-
cessful, many important medical, sociological, and economic
questions might be more rigorously answered than they have
been in the past without having to make strong assumptions
about absence of unobserved homophily or unobserved con-
founding. Conclusive evidence of peer effects would confirm
that treatment of traits such as obesity, smoking, alcoholism,
and depression could be improved by treating an individual’s
peers in addition to himself, or by intervening on the compo-
sition of his peer group to remove undesirable peer influences.

9. Supplementary Web Appendix

Web Appendices, Tables, and Figures referenced in Sections 6,
6.1, 7, and 7.1 and additional references are available with
this paper at the Biometrics website on Wiley Online Library.
Example code, example data, and associated instructions for
running the code are also available as a web supplement (same
website).
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