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Abstract

Many behavioral phenomena have been found to spread interpersonally through social networks, in a manner similar to
infectious diseases. An important difference between social contagion and traditional infectious diseases, however, is that
behavioral phenomena can be acquired by non-social mechanisms as well as through social transmission. We introduce a
novel theoretical framework for studying these phenomena (the SISa model) by adapting a classic disease model to include
the possibility for ‘automatic’ (or ‘spontaneous’) non-social infection. We provide an example of the use of this framework
by examining the spread of obesity in the Framingham Heart Study Network. The interaction assumptions of the model are
validated using longitudinal network transmission data. We find that the current rate of becoming obese is 2% per year and
increases by 0.5percentage points for each obese social contact. The rate of recovering from obesity is 4% per year, and
does not depend on the number of non-obese contacts. The model predicts a long-term obesity prevalence of
approximately 42%, and can be used to evaluate the effect of different interventions on steady-state obesity. Model
predictions quantitatively reproduce the actual historical time course for the prevalence of obesity. We find that since the
1970s, the rate of recovery from obesity has remained relatively constant, while the rates of both spontaneous infection and
transmission have steadily increased over time. This suggests that the obesity epidemic may be driven by increasing rates of
becoming obese, both spontaneously and transmissively, rather than by decreasing rates of losing weight. A key feature of
the SISa model is its ability to characterize the relative importance of social transmission by quantitatively comparing rates
of spontaneous versus contagious infection. It provides a theoretical framework for studying the interpersonal spread of any
state that may also arise spontaneously, such as emotions, behaviors, health states, ideas or diseases with reservoirs.
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Introduction

Social network effects are of great importance for understanding
human behavior. People interact with a varying number of
individuals and with some individuals more than others, and this
affects behavior in fundamental ways. Sociologists have long
studied social influence through networks, and networks now
routinely appear in investigations from other fields, including
economics [1], physics [2], public health [3] and scientific
publishing [4,5]. Extensive reviews of social networks analysis,
including investigations of their structure and their effect on social
dynamics, include Mitchell [6], Wasserman [7],Watts [2], Rogers
[8], Jackson [1], and Smith [9]. Networks have also long been
known to be important in many areas of biology (reviewed by
[10]), including ecological food webs and the evolution of
cooperation [11–14]. Social networks have also been studied as

determinants of health (reviewed by Smith [9]), ranging from
determining the patterns of infectious disease spread [15] to the
propagation of phenomena such as emotions [16–18], smoking
cessation [19], obesity [20], suicide [21], altruism [22], anti-social
behavior [23], and online health forum participation [24]. These
studies suggest that on top of the physical environment, the social
environment can also be an important contributor to health. They
have lead to suggestions that public health interventions must be
designed that work with the network structure and that the
network can be exploited to spread health related information
[9,25].

Within network studies, much work has focused on how
information, trends, behaviors and other entities spread between
the individuals in social networks. These processes are generally
referred to as ‘contagion’. Such suggestions of contagious
dynamics and the possible relevance of network structure can be
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rigorously examined using mathematical models of contagious
processes. These can then be used to obtain accurate measures of
expected prevalences, interventional efficacy, and optimized
information flow. Many previous models have been proposed to
study influential interactions between individuals. Most of these
have considered well-mixed populations, although more recent
work has focused on network-structured populations. The most
well studied are classic epidemiological models (like SIS and SIR)
for the spread of microbial infectious diseases [26], including
spread in network-structured populations [27–30], [31], [15].
Various related processes have been used to model social
influence, with important contributions including the same
epidemiological models [32,33], diffusion models [8,34–38],
statistical mechanics type interactions [39,40], and threshold
models [41](reviewed by Jackson [1] and Newman et al. [42]).

Each of these models, however, has one or more properties that
are problematic for studying social contagion. Many do not
capture the probabilistic nature of contagion, or the asymmetry
inherent in traditional infectious disease (where the infected state
spreads through social contagion whereas the non-infected state
does not). Others only consider well-mixed populations, where
everyone is influenced by everyone else, ignoring the effect of
network structure. Most models inspired by epidemiology are not
directly applicable to the social spread of other phenomenon,
because many phenomena that spread by social contagion may
also arise spontaneously. That is, it is possible to adopt a trend or
behavior, or obtain information, from an outside source, without
directly ‘catching’ it from a contact in the network. In other words,
on top of the probability of obtaining the infection from each
infected contact, there is also a non-zero probability of
‘automatically’ obtaining the infection, independent of the local
network. This ‘automatic’ non-social infection is not included in
traditional infectious disease models. Economic models for the
diffusion of innovations, based on early work by Bass [34], do take
into account ‘automatic’ infection. Individuals move from
‘susceptible’ (non-adopter) to an infected (adopter) state by
adopting a new product or idea, influenced by both social and
non-social factors. However, these models do not allow for

recovery; because the innovation adoptions are assumed to be
permanent changes in behavior, individuals never move back to a
susceptible state. This results in the entire population becoming
adopters at equilibrium. This does not reflect the dynamics of
many phenomena that spread socially, which may be repeatedly
acquired and lost (for example, happiness or obesity). Through a
balance of infection and recovery, a steady-state with multiple
states of individuals coexisting can be reached. Finally, most
previous models make assumptions about the type of interaction
between individuals, the particulars of which are not usually
validated with real data. Yet, long term behavior of a model and
the prevention strategies it suggests can depend critically on the
specifics of the interaction assumptions.

Here, we introduce a new model to study the spread of entities
in a social network which has all of the important properties listed
above. We then analyze its characteristics and show how it can be
applied in different contexts. This model is an extension of the
classical infectious disease model, combining features from other
models mentioned above. It describes infections that can be
contracted both spontaneously and through social (network-
structured) transmission, and allows for recovery from infection.
As an example, we focus on the spread of obesity in the
Framingham Heart Study (FHS) network. The interaction
assumptions of the model will be validated using longitudinal
network transmission data. We show how we can quantitatively
assess the values for the rate of adopting a trend spontaneously
versus by contagion to determine the extent to which social
transmission is important. We use it to predict prevalences and
intervention effectiveness (i.e. get quantitative output, not just
qualitative behavior). The results of this model are very different
from models with other interaction assumptions, such as the
‘majority rules’ models. We will show that transmissive compo-
nents are often small compared to the automatic component, but
may still contribute materially to prevalence levels. Lastly, we will
use pair-wise approximations to generate analytic results for
infections in network-structured populations, as well as presenting
simulations using a real social network.

Methods

Classic infectious disease modeling
In the simplest infectious disease models [26], individuals are

classified as occupying one of two states: ‘susceptible’, meaning they
do not have the disease, and ‘infected’, meaning they do have the
disease. The disease can be transmitted to a susceptible person when
they come into contact with an infected person. The rate of this
disease transmission from infected to susceptible is defined as b, the
transmission rate. Once an individual is infected, they recover from the
disease at a constant rate g, regardless of their contacts with
susceptibles or infecteds. In one class of disease models (susceptible-
infected-recovered, or SIR), recovered individuals become immune
to further infection and enter a ‘recovered’ state. However,
behaviors, trends, health states, etc, can occur many times over
an individual’s life, and therefore we assume infected individuals
return to the susceptible state after recovering. This form of
susceptible-infected-susceptible (SIS) model is used to model
infectious diseases that do not confer immunity, like many STDs.

Application to social contagion
In the standard SIS model, infection can only be transmitted by

having a contact between an infected and a susceptible individual.
Social ‘infections’, however, can also arise due to spontaneous
factors other than transmission. Therefore, we extend the SIS
model by adding a term whereby uninfected individuals

Author Summary

Information, trends, behaviors and even health states may
spread between contacts in a social network, similar to
disease transmission. However, a major difference is that as
well as being spread infectiously, it is possible to acquire
this state spontaneously. For example, you can gain
knowledge of a particular piece of information either by
being told about it, or by discovering it yourself. In this
paper we introduce a mathematical modeling framework
that allows us to compare the dynamics of these social
contagions to traditional infectious diseases. We can also
extract and compare the rates of spontaneous versus
contagious acquisition of a behavior from longitudinal
data and can use this to predict the implications for future
prevalence and control strategies. As an example, we study
the spread of obesity, and find that the current rate of
becoming obese is about 2% per year and increases by 0.5
percentage points for each obese social contact, while the
rate of recovering from obesity is 4% per year. The rates of
spontaneous infection and transmission have steadily
increased over time since 1970, driving the increase in
obesity prevalence. Our model thus provides a quantita-
tive way to analyze the strength and implications of social
contagions.

Modeling Social Contagion in Networks
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spontaneously (or ‘automatically’) become infected at a constant
rate a, independent of infected contacts. A diagrammatic
representation of our modified SIS model, which we will call
SISa, is shown in Figure 1. The corresponding differential
equations for a well-mixed population are described in Eq. 1

dI=dt ~bSI{gIzaS

dS=dt ~{bSIzgI{aS

IzS ~N

ð1Þ

where I is the number of infected individuals, S is the number of
susceptible individuals, N is the population size, b is the
transmission rate, g is the recovery rate, and a is the rate of
spontaneous infection. This model assumes a constant population
size and neglects birth and death. The SISa model is related to
infectious disease models with ‘imports’ (migration of infecteds into
the population), although here the rate of spontaneous infection is
proportional to the number of susceptibles, while in import models
it is a constant or proportional to the total population size.

In the infectious disease literature, a disease is said to be
‘endemic’ if a stable, non-zero fraction of the population is infected
at steady state. If a single infected individual is introduced to a
totally susceptible population, then the average number of
secondary infections they cause before recovery is called the basic
reproductive ratio, R0. For the regular SIS model in a well-mixed
population of N individuals, R0~bN=g. An epidemic, leading to
an endemic equilibrium, only occurs for R0w1, and hence R0 is a
fundamental quantity used to describe and compare infectious
diseases. For the SISa model, an epidemic occurs for all parameter
values, due to the spontaneous infection term. Thus, social
behaviors that can be adopted independently of neighbors mean
that there is no longer a threshold for the behavior to become
prevalent in a population, and even in the absence of contagion
there would be a non-zero steady state prevalence. Because of this,
there is not an obvious definition for R0 in the SISa model. The
steady state fraction of infected individuals in a well-mixed
population is given by Eq. 2.
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Infectious diseases on networks
Traditional models of infection assume that the population is

well-mixed. However, this assumption is unrealistic for many
diseases, and also for the social spread of trends and behaviors. To
account for the population structure, the infectious process can be
constrained to take place on a social network. An infected
individual can only pass their infection on to the suspectibles to
whom they are connected. Properties of the infectious process thus
depend on both the epidemiological parameters and the network
structure, and there are often no longer simple analytic formulas to
describe the reproductive ratio or steady state level of infection.
For example, a property of disease spread on networks are spatial
correlations (in the network sense) that arise between individuals in
the same state. This correlation is defined as the ratio of the
observed number of connections between two types of individuals
to the number of connections expected if the positioning of
individuals in the network was random. Spatial correlations of like
individuals can be caused by an infective process spreading within
a network [29], but may also be caused by confounding
environmental factors which similarly influence the behavior of
connected individuals, or the formation of contacts based on
similar behavior (also called homophily). For a network of N
individuals with a total of E connections between them, the
correlation between two states X and Y is defined by:

CXY ~
observed number of X-Y edges

expected number of X-Y edges

~
XY½ %

E # X # Y=N2

ð3Þ

The correlation between infected individuals, CII , rises above
one as the epidemic proceeds, due to cluster formation as infected
individuals transmit to their contacts. Similarly, the correlation
between infected and susceptible individuals, CSI , drops below
one. The deviation of these correlations from 1 increases with (i)
the ratio of transmissive infection (b) to spontaneous infection (a) in
our model (there are no correlations without a transmissive
component), and (ii) the inter-connectivity (transitivity) of the
network. As a result of these spatial correlations, diseases on
networks can progress more slowly than their well-mixed
counterparts, leading to lower basic reproductive ratios. However,
heterogeneity in the number of contacts per individual acts to
increase R0. For two networks with the same average degree, if
one has a larger variance in degree, then R0 will be increased.
Thus, it is possible for diseases on networks to have lower (or
nonexistent) thresholds for endemic epidemics.

Approximate pair-wise equations
There are no analytic methods to solve SIS-type dynamics on

arbitrary networks without making approximations. Thus, simu-
lations are a more accurate tool to explore theoretical disease
dynamics in structured populations without making simplifying
assumptions about the network structure. For scaled, well-mixed
populations, the formulas given in the previous sections for R0 and
I# are good approximations if N is replaced with n, the average
contacts at a given time, while fixed networks, especially if non-
uniform and highly inter-connected, can deviate from these values
significantly. We can use a pair-wise approximation [29,43,44] to
formulate the infectious process on a network structure in terms of
differential equations. The fundamental variables are numbers of
individuals of each type, and also the pairs of individuals, [XY]
(where the edges are not directional). Because [XY] = [YX], and

Figure 1. The SISa model of infection. There are three processes by
which an individual’s state can change. (i) An infected individual
transmits infection to a susceptible contact with rate b. (ii) A susceptible
individual spontaneously becomes infected at rate a, regardless of the
state of their contacts. (iii) An infected individual returns to being
susceptible at rate g, independent of the state of their contacts.
doi:10.1371/journal.pcbi.1000968.g001

Modeling Social Contagion in Networks
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the total individuals and total edges is constant, the system can be
reduced to three equations.

½ _II % ~b½SI %za½S%{g½I %
½ _III % ~2b(½ISI %z½SI %)z2a½SI %{2g½II %
½ _SSI % ~b(½SSI %{½SI %{½ISI %)za(½SS%{½SI %)zg(½II %{½SI %)

ð4Þ

Here [XYZ] represents the number of situations where and X
individual is connected to a Y individual who in turn is connected
to a Z individual. We can approximate all these triples in terms of
pairs, using a moment closure approximation ([43], Text S1),
which then reduces the number of variables to three also. Then
these equations can be simplified to

_ff I ~bnfSI za{(azg)fI

_ff II ~2b(n{1)
f 2
SI

1{fI
1{wzw
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with

fI ~I=N

fII ~ II½ %=nN

fSI ~ SI½ %=nN

ð6Þ

where n is the number of contacts each individual has and w is the
transitivity of the network (the ratio of triangles to triples). Having a
simplified set of equations is very useful for understanding contagion
dynamics in structured populations. Integrating equations is much
faster than running simulations on large networks, and from them
analytic results can be derived which allows determination of
parameter dependence. These equations assume that the local
neighborhood for each individual is identical, that is, everyone has
the same number of contacts (n) and the same w. They thus take into
account the effects of fixed network structure but not heterogeneities
between individuals. In the Supplementary Information (Text S1)
we have included the extension of these equations to include
heterogeneities. These equations can be used to easily simulate
disease spread and get expected steady state prevalences and
correlations, which are very useful approximations and give insight
into parameter dependence. Later, we will compare these equations
to results from full simulations on realistic networks. When w~0
(which is approximately the case for most random graphs) we can
get a closed-form solution for the prevalence at steady state:
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C#SI~
(1{J(azg)

Jbn(1{Jg)
ð8Þ

0~((azg)2{gbn(n{1)zbna)J2z(bn(n{1)

z(n{2)(azg))J{(n{1)
ð9Þ

The result of a network structure is that the number of
partnerships between susceptible and infected individuals quickly
becomes less than if random, and so CSIv1. We can compare Eq.
7 to the well mixed result (Eq. 2), and see that the effect of the
network is to lower the effective transmission rate by a factor of
CSI , and hence lower the prevalence, due to these correlations that
build up locally. The larger b is compared to a, the more network
effects are important. If infection is mostly automatic (when
b=a?0), the network no longer matters. Equation 7 actually holds
generally (for any homogeneous network and any w value), while
Equations 8 and 9 are only applicable with w = 0.

Analyzing the n-regular pair-wise equations allows us to get
analytic results and determine how and under what conditions
network structure affects the spread of behaviors which are both
spontaneously acquired and spread interpersonally. Although
simple closed-form solutions do not exist when w is non-zero,
these equations can easily be integrated or numerically solved to
get solutions. These equations ignore heterogeneities in the
number of edges for different individuals, which can facilitate
spread under some conditions (see supplement Text S1 for
extension). Full stochastic simulations on large networks can be
carried out to determine how and when the results differ.

Results

Calibrating model with FHS Network data
The SISa model provides a formal way for assessing the social

contagion of trends and behaviors that may be repeatedly caught
and recovered from. Using data from the Framingham Heart
Study (FHS) [45] we tested the validity of this model and estimated
transmission parameters for various health related behaviors,
though the focus here is on obesity as an example. To both
demonstrate that obesity can display infectious-disease-like
dynamics, and to estimate values for the model parameter a,b,
and g, we use dynamic information about transitions between
states based on our multiple time points of data. For data points
separated by time intervals (Dt) smaller than the average time
between transitions, the transition probabilities can be linearized.
The probability of a transition from susceptible to infected after a
time Dt can be given by P(S?I ,Dt)*(azbnI )Dt, and the
probability of transition from infected to susceptible after time Dt,
by P(I?S,Dt)*gDt. It is necessary for the time between
measurements to not be comparable to or greater than the
average lifetime of a state to keep the probability of double
transitions within a time interval low.

This epidemiological approach to social contagion has impor-
tant differences from other models which look at correlations in
present and past states of connected individuals. Here, similar to
others [16,19,20], [46] we look at how contacts influence the
transitions between states, which better captures the nature of
contagion. Since we use pre-existing social ties, we do not see
effects from selection bias in choosing friends with similar states.
Additionally, time invariant confounding events that lead to
concurrent changes in connected individuals will not show up as
contagion effects in this model.

The dataset we use is a subset of individuals from the
Framingham Heart Study [45]. This study was initiated in 1948
in Framingham, Massachusetts and has continued enrolling
subjects through the present. We examined individuals in the
Offspring Cohort, enrolled starting in 1971. Subjects come to a
central facility at regular intervals (approximately every 4 years) for
medical examination and collection of other survey data. Body
mass index (BMI) was measured at each exam, and obesity was
defined as BMI§30 [47]. All other, lower, weights, which include

ð5Þ
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underweight, normal range weight and over-weight, were
classified as ‘not obese’. In additional to information on mental
and physical health, subjects were asked to name at least one close
friend at each exam, and were also connected to all first-order
relatives, as well as coworkers and residential neighbors. For each
subject, the following social connection data is available: (i) each
other person to whom they were connected, (ii) the dates of
initiation and termination of that relationship, (iii) the type of
relationship (neighbour, coworker, first-degree relative, or friend),
and (v) the geographic distance between the two subjects. The
social network for each exam was constructed by creating a
network matrix G, where Gijk~1 if subject i nominated subject j
as a connection before or during the time that subject i was
administered exam k. All relationship types are mutual except for
friendships, which are self-nominated, such that Gijk=Gjik is
possible for friendships.

To study the transmission of obesity, we examine changes in
BMI between sequential exams. Seven exams were administered
to the Offspring Cohort between 1971 to 2001, with network data
collected for each. We examine transitions occurring between each
exam. The average fraction of the network that was classified as
obese increased between these seven exams, suggesting the
transmission process is not yet at steady state (Exam 1: 14%
obese; Exam 7: 29% obese). Each set of exams were closely and
consistently spaced (Dt~7:9+0:5 year (exam 1), 3+1 year (exam
7)). In general when modeling an infectious process, the rates of
infection and recovery are assumed to be constant over time, with
the prevalence changing as the infectious process begins and
finally reaches equilibrium or is eliminated. When examining the
spread of obesity using longitudinal data on transitions between
exams, we can actually test this assumption and detect changes in
the rates themselves.

A given state X is considered infectious if having more contacts
in state X makes you more likely to switch to state X . That is, a
positive relationship between the number of contacts in state X
and the probability to transition from state Y to state X indicates
that state X is infectious with respect to state Y . Therefore, to test
whether a given state X is infectious with respect to another state
Y , we perform an ordinary least squares (OLS) linear regression as
follows. Each subject in state Y in exam N is coded as either
having transitioned to state X (transition = 1) or not (transition = 0)
in exam N+1. We then regress this binary transition variable for
each subject against the number of contacts in state X that subject
had during exam N. A significant positive correlation indicates
that having more friends in state X at the earlier exam makes you
more likely to switch to state X in the later exam. If state X is
infectious (a significant positive correlation exists), then the value
of b can be calculated from the slope of the regression line, and the
value of a can be calculated from the intercept. If state X is not
infectious (no significant correlation exists), then the value of g can
be calculated from the intercept. Dt was taken as the average time
between examinations, which varied between exams from 3 to 8
years. Using logistic regression as opposed to OLS regression gives
very similar results, as the datapoint line is within the linear range
of the logistic model.

The structure of the Framingham Heart Study social network
varies over the course of time, ranging from 7500 individuals with
an average of 5.3 connections each at the first exam, to 3500
individuals with 2.8 connections on average at the seventh exam.
Summary statistics are presented in the supplement (Table S1).
These changes in population size and average degree occur
because individuals may die or drop out of the study but new
individuals are not added. The network is approximately Poisson
distributed (see Figure 2), although with some subjects having no

connections. The transitivity w is consistent over time at
approximately 0.64. While neighbors were included as contacts
in the study, like Fowler and Christakis [20] we find no significant
trends when including neighbors, and so did not include these
contacts. For friendships, we only consider the contacts of an
individual to be those other individuals whom they nominated
(other relationships are all mutual), and so the network is
directional.

The results of infectiousness analysis for the spread of obesity
between exams 4 and 5 are shown in Figure 3 as an example.
Consistent with the SISa model formulation, we find a significant
positive correlation between the probability of transitioning from
‘not obese’ to ‘obese’ and the number of ‘obese’ contacts
(Figure 3A, coeff = 0.016, p = 0.0001), and no significant relation-
ship between the transition from ‘obese’ to ‘not obese’ and the
number of ‘not obese’ contacts (Figure 3D, coeff = 0.006, p = 0.15).
Additionally we find no significant relationship between the
probability of transitioning from ‘not obese’ to obese and the
number of ‘not obese’ contacts (Figure 3B, coeff = 20.0005,
p = 0.75), or the probability of transitioning from ‘obese’ to ‘not
obese’ and the number of obese contacts (Figure 3C,
coeff = 20.002, p = 0.85). The same analysis was repeated for
each interval between sequential exams and very similar results
were found. The full results from the regression analysis are
presented in the supplement (Table S2). This suggests that obesity
can indeed be modeled as an infectious process in the SISa
framework, with ‘not obese’ susceptibles becoming ‘obese’
infecteds, and transmitting obesity to other susceptibles. The
parameters for the SISa model can be calculated from the
transition probabilities mentioned earlier, by dividing slope and
intercept values by Dt, the average time between exams. These
values are reported for each exam in Figure 4, and the values at
the latest exam interval are summarized in Table 1. For most
recent exam, the transmission rate, b, is found to be 0:0050/year.
The spontaneous transmission parameter a is found to be 0:019/
year. The recovery parameter g is found to be 0:043/year. From
these SISa model parameters, other values of interest can be
calculated. The ‘average lifetime’ of a state is the average length of
time and individual spends in this state before recovering, which

Figure 2. The degree distribution of the Framingham Heart
Study Network. The degree distribution of the Framingham Heart
Study social network at the most recent exam (7) considered in this
study. Connections include friends, family and coworkers. The average
degree is around k = 3 and the transitivity is w = 0.64 (the ratio of
triangles to triples).
doi:10.1371/journal.pcbi.1000968.g002
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was found to be 24 years for this time period. The ‘influence’ of a
state is the cumulative probability that the infection will be passed
from an infected to a susceptible connection before the infected
individual recovers, and is observed here to be 13%. The ‘cycle
length’ is the average length of time between spontaneous
infections, and is 56 years. The basic reproductive ratio is

approximately 0.35, which implies that without spontaneous
appearance, the obesity epidemic would not be self-sustaining
based on transmission alone. However this calculation is an
approximation since uses the formula for a population that is well-
mixed but only effectively contacting a fraction of the total
population at each time (n contacts), so does not factor in fixed

Figure 3. Evidence for disease-like spread of obesity. Obesity behaves like a disease agent, infecting those in a susceptible ‘not obese’ state.
The probability of transitioning from ‘not obese’ to ‘obese’ increases in the number of ‘obese’ contacts (A), and doesn’t depend on the number of ‘not
obese’ contacts (B). Conversely, the probability of recovering to the ‘not obese’ state does not depend on the number of ‘not obese’ contacts (D) or
the ‘obese’ contacts (C)). Labels above points on plot are the number of observations averaged into that data point, and error bars are the standard
error of the proportion.
doi:10.1371/journal.pcbi.1000968.g003

Figure 4. Change in observed parameters over time. Parameter measurements for obesity from each set of consecutive exams. Data point at
exam N represents the value for the transition from exam N to N+1. Error bars are 95% confidence intervals on measurements from regression of
transition probability versus number of contacts of a certain type. (A) Contact-independent rates. The rate of recovery (g) appears to be constant
within the margins of error throughout the study while the rate of automatic infection (a) appears to increase between exams 1 and 3, then stay
constant. (B) The contact-dependent transmission rate (b) appears to increase over time.
doi:10.1371/journal.pcbi.1000968.g004
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network structure (there is no analytic formula for this situation).
We observed a correlation in the positioning of obese and non-
obese individuals of CII = 1.3 and CSI = 0.9.

Since these rates were measured for 6 different inter-exam
transitions over 30 years, we can look at how the value of these
rates changes over time. Figure 4 shows the measured automatic
infection (a), transmission (b), and recovery rates (g) for each exam
interval. Error bars are 95% confidence intervals on measurements
from analyses like Figure 3. While the rate of recovery (g) has
remained relatively constant since the 1970s, the rate of
spontaneous infection (a) has steadily increased over time. The
transmission rate, b, also appears to have increased over time.
These trends were tested using weighted regression (to include the
different errors for each measurement) and found to be significant
for a and b but constant for g. For the rest of the study we used the
time-averaged value of g, g~0:035. This suggests that the obesity
epidemic may be driven by increasing rates of becoming obese,
both spontaneously and transmissively, but not by decreasing rates
of losing weight.

We also found that both happiness and depression fit the SISa
model, both being contagious from a neutral emotional state [18],
that smoking cessation, though not smoking itself, also fit, and that
both alcohol consumption and abstinence were contagious from
the opposite state (data not shown). For all of the above cases, we
tested if the transition probability depended instead on the fraction
of contacts in a state, instead of the number, and found no
significant dependence. We also tested for dependence on other
personal attributes such as age, sex and education, and found no
dependence in most cases. For obesity, the transition probability
from not obese to obese decreased slightly with age (coeff =
20.0012, p = 0.04). Our results show that many models of social
influence make assumptions about interpersonal interactions that
are not supported by this longitudinal data. One of these
assumptions is the ‘majority rules’ interaction, which assumes that
people will be most likely to switch to the state most of their
contacts are in [40]. Here, transitions depend on the number of
contacts, and only certain states (those we class as ‘infectious’)
actually influence transitions (in other words, contagion is only in
one direction). This has significant effects on the predictions for
epidemic progression. For example, ‘majority rules’ models predict

100% infected at steady state, and that weight loss behavior
spreads and so an effective intervention is to ‘pin’ certain
individuals at low weights. Also, many models assume that the
probability of transitioning to a state is zero if no contacts are in
that state, but these results show that there is a constant probability
of spontaneously becoming ‘infected’. Finally, using this frame-
work, we can get rates for transitions, and hence have an idea for
the time-course of the progression, not just the final outcome.

Case study: Modeling the obesity epidemic
In this section, we will use the SISa model to make predictions

and evaluate interventions for the obesity epidemic, using the
parameters observed in the FHS data. For simplicity and
generality, we will keep the parameters a and b constant at the
values observed for the most recent exams, and use the time-
averaged value of g. Since we are mostly interested in predicting
future trends, and the parameters seem to have relatively constant
values over the final decade, this simplification should not affect
these predictions. We also keep the network fixed at the structure
observed at Exam 6, except when we compare to historic data.
While the simplified pair-wise equations we present are designed
for symmetrical networks, they can be approximately adapted to
directional networks by letting n represent the average out-degree
(average number of influential contacts) instead of the total
number of contacts. In the Framingham data, greater than 90% of
contacts are symmetrical, and so there is little error in this
approximation. For hypothetical networks were the contacts
formed by out-degree and in-degree are very different sets of
individuals, deviations are expected. Figure 5 shows the results of
both the n-regular pair-wise equations and a full simulation on the
FHS network for the spread of the obesity epidemic. The
parameters used were those measured from FHS as discussed
earlier. One of the important properties of the SISa model is that it
always leads to a stable coexistence of both infected and
susceptible individuals, with infecteds becoming 100% prevalent
only in the limit as a or b approaches infinity. This is very different
from statistical-physics-based interaction models where the
population always ‘coarsens’ to everyone in a single state [40].
These results show that for the parameters measured for obesity,
the pair-wise equations are not significantly different from the full
simulations for predicting prevalence, and hence provide a good
substitute. The reason is that the spontaneous rate (a) is
significantly larger than the transmissive component (b). For
larger values of b=a, there is a noticeable difference (shown in the
next section).

This model predicts that, assuming the rates do not further
change over time, the steady state proportion of obese individuals
will be 42%. While not great, this is a much more optimistic
estimate than 100% [40]. However, all of the parameters observed
in this study have an error associated with them, and so there is
some uncertainty in this prediction. Figure 4 shows the ranges of
the 95% confidence intervals for these values. We can estimate the
uncertainty in this prediction by using first the values of these
parameters, within the range of one standard deviation, that would
give the highest prevalence (azda,g{dg,bzdb) and then those
that would give the lowest (a{da,gzdg,b{db). We used
g = 0.05, a = 0.015 and b = 0.002 to get the minimum and
g = 0.03, a = 0.023 and b = 0.008 to get the maximum. These
simulations suggest the confidence interval for the expected
prevalence can be approximated as 25% to 54%. This model also
allows us to estimate the time-course of the epidemic, and suggests
it would take around 40 more years for the obesity prevalence to
be within 1% of this maximum value. At the first time point in our
data (1970), we measured the rates to be a = 0.008, g = 0.03 and

Table 1. Parameter estimates for obesity between exams 6
and 7 (1995–2001) using the SISa model framework.

Parameter Description Value

a rate of spontaneous infection 0:019/yr

g rate of recovery 0:043/yr

b rate of transmission through contact 0:0050/yr

1/a cycle 53 years

1/g lifetime 24 years

1{e
{bn

g influence 0.13

Ro~bn=g basic reproductive ratio 0.35

The ‘average lifetime’ of a state is the average length of time an individual
spends in this state before recovering. The ‘influence’ of a state is the
cumulative probability that the infection will be passed from an infected to a
susceptible connection before the infected individual recovers. The ‘cycle
length’ is the average length of time between spontaneous infections. The
basic reproductive ratio is calculated by setting a~0. However this calculation
is an approximation since it does not factor in fixed network structure. Since
R0v1, the obesity epidemic would not be self-sustaining based on
transmission alone.
doi:10.1371/journal.pcbi.1000968.t001
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b = 0.001, and the prevalence to be 14%. These parameters would
have led to a steady state prevalence of 24%, which suggests that
the rates of becoming obese must have originally been much lower
than this.

We can also compare historical data on the obesity prevalence
(from both national studies [47] and the FHS data) to the
predicted time course shown here. To generate the model
prediction, we simulated an epidemic with the pair-wise equations
but allowed the rate values and network parameters to change as
measured from the data (see Figure 4 and Table S1). We kept g
constant at the average value observed, 0.035, and varied a and b
as observed. The value for parameter a measured for the transition
between exam N and Nz1 (aN ) was used in the simulation for
times (years) between the average examination dates of exams N
and Nz1, and then increased to aNz1 for the next time interval.
The same was done for b. For times before the earliest data points
in FHS for which we have measured rate constants(pre 1970), we
assumed the epidemic was at a steady state of 14%. This could be
achieved, for example, with a~0:0057 and b~0. Figure 6 shows
that there is a good match in the time course of the model with
reality after 1970, with similar rates of increase in the prevalence.

We can use the pair-wise equations to see how the steady state
prevalence depends on various parameters, which is especially
useful to see how interventions that aim to change a certain
parameter may affect the prevalence. Figure 7 shows these results.
For the parameter values for obesity, although a is quite large, b is
still important. If b changes from 0 to 0.005, the expected steady
state changes from around 0.35 to 0.42. However, much larger
changes can be realized by decreasing a or increasing g. For the
obesity parameters, completely removing the contagious compo-
nent is only expected to change the steady state prevalence by
around 7%. However, changing the spontaneous infection term
can have much larger effects. While a 50% change in b will result
in only a 3% decrease in I, cutting a in half will reduce the
prevalence by 15%. However, a similar absolute decrease of 0.005
would also lead to a 7% difference. The efficiency of changing one
parameter versus the other can be looked directly at dI=dx for
various parameters, which will be shown in the next section.

General properties of SISa model
In this section we will examine the more general properties of

‘infections’ following SISa model dynamics. While Figure 5
showed excellent agreement between the pair-wise equations
and full simulations for the time dynamics, this is not true for all
parameter regimes. When b is larger and a is smaller (as shown in
Figure 8), and the network is strongly heterogeneous (as the
Framingham network is), the pair-wise model deviates more. The
reason is that heterogeneous network effects become more

Figure 5. Simulations of obesity epidemic using SISa model. Time series of an epidemic on the Framingham Heart Study network, using full
simulations (light blue) or the n-regular pair-wise equations (dark blue). Parameters used are those measured for the obesity epidemic:
a~0:019, b~0:0050, g~0:035, w~0:64, n~3:0. In the SISa model there is a co-existence of susceptible and infected individuals at steady state. For
these parameters there is a good agreement with simulations and the pair-wise equations for the fraction infected (A), but the equations predict less
correlations (B), due to the neglect of heterogeneities in the number of contacts.
doi:10.1371/journal.pcbi.1000968.g005

Figure 6. Comparing SISa model timecourse to historical data.
A comparison of historical data on the prevalence of obesity in the
Framingham Heart Study (blue dots) and the National Health and
Nutrition Examination Survey (red dots) with the timeseries predicted
from the SISa model with time-varying parameters. For the simulation,
we allowed the parameters a and b to vary as observed in Figure 4, but
kept g constant at its average value. Before 1970 (when our
measurements started), the prevalence of obesity was assumed to be
stable at 14%. The model and the data both show very similar rates of
increase, with a slow post-1970 increase, followed by a rapid increase,
and then increasing more slowly. The SISa model predicts the
prevalence of obesity will increase slowly to a peak at 42%.
doi:10.1371/journal.pcbi.1000968.g006
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important for larger b, and the pair-wise approximations are best
for homogeneous networks. The extension of the pair-wise
equations to heterogeneous networks is described in the supple-
ment (Text S1).

We can use the pair-wise equations to see how the steady state
prevalence depends on various parameters, which is especially
useful to see how interventions that aim to change a certain
parameter may affect the prevalence. Figure 9 shows how the
steady state changes with the rate of transmission, b. The blue line
(a~0) shows what would happen in a classical epidemic, with no
spontaneous infection. When b is below a certain value (Row1),
the infection does not spread. The fraction infected increases
rapidly with b in this regime. As soon as we add aw0, this
thresholding behavior disappears. When aw0 the steady state is
less sensitive to b. The red line (a~0:02) shows the approximate
parameter values for obesity. Here although a is quite large, b is
still important. As with classical infectious disease models [29],
disease spread on a network leads to decreased CSI , the spatial

correlation between infected and susceptible individuals, and
increase CII and CSS , the correlation between pairs of infected
individuals and pairs of susceptible individuals, respectively. If we
look at CII , we can see that we expect there to be some
correlations of infected people at some b=a values, but not all. So
while seeing spatial correlation may hint there is a inductive
process, it is definitely not necessary. You can have an infectious
process without seeing correlations, just like you can see
correlations without it being caused by the dynamics of influence.
Spatial correlation is much higher when a is small.

Figure 10 shows the dependence on the rate of spontaneous
infection, a. The more spontaneous infection, the more infected.
When b is larger (red line), increasing a has less effect. The green
line is for the parameters measured for obesity. We can use these
graphs to compare the effects of various interventions which may
reduce the rate of infection. In Figure 9 (vs b), we can see the
expected decrease in the prevalence of the infection for a given
decrease in b. Changing b has more effect when a is small. The rate

Figure 7. Fraction infected versus SISa model parameters. Dependence of the equilibrium fraction infected on obesity interventions which
act to change the rates of infection (transmission (A) and ‘automatic’ infection (B)) or recovery (C). When not varying, parameters are
a~0:019, b~0:0050, g~0:035, w~0:64, n~3:0.
doi:10.1371/journal.pcbi.1000968.g007

Figure 8. Pairwise equations diverge from simulations when transmission is higher. Time series of an epidemic on the Framingham Heart
Study network, using full simulations (light blue) or the n-regular pair-wise equations (dark blue). When the ratio of b=a is larger than that observed
for the spread of obesity, the pair-wise equations diverge more from the full simulations, both for the fraction infected (A) and the correlations (B).
a~0:005, b~0:02, g~0:0045, w~0:64, n~3:0.
doi:10.1371/journal.pcbi.1000968.g008
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Figure 9. Dependence of the equilibrium fraction infected and correlations on the rate of transmission, b. Dependence of the
equilibrium fraction infected (A) and correlations (CSI :(B), CII :(C), CSS :(D)) on the rate of transmission, b. When aw0, expected in most social
infections, there is no longer a threshold (Row1) needed for the infection to invade the population. The network causes infected individuals to
cluster CIIw1 away from susceptible individuals CSIv1, and this is more pronounced for larger b=a and lower fraction infected. Parameters are
g~0:035, w~0:64, n~3:0.
doi:10.1371/journal.pcbi.1000968.g009

Figure 10. Dependence of the equilibrium fraction infected and correlations on the rate of automatic infection, a. Dependence of the
equilibrium fraction infected (A) and correlations (CSI :(B), CII :(C), CSS :(D)) on the rate of automatic infection, a. Parameters are
g~0:035, w~0:64, n~3:0.
doi:10.1371/journal.pcbi.1000968.g010
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of recovery from an infection is g, and in the obesity case, represents
the rate at which obese people lose weight and transition to normal
BMI values, in probability per year. Higher rates of recovery lead to
lower fraction infected (Figure 11). One possible intervention is to
increase the rate of recovery. For low recovery values, this has a
large effect on I , but for g around 0.04 (the value for obesity), only
small changes in I result from changing g.

In general, the spatial correlations (CII ) are negatively
correlated with the fraction infected (I); more correlations are
observed when a disease is not too infectious. If the spatial
correlations were fixed to be a certain value (for example obese
people cluster together due to selection bias in friendships or
confounding factors), then this would actually serve to slow
infection. Since we do not observe contagion of losing weight, it
does not seem like it would be beneficial to have an intervention
which broke up obese clusters.

The most direct way to compare various parameters for spread,
and therefore interventions that reduce one of the parameters, is to
look directly at dI=dx for various parameters (I is the steady state
fraction infected, x is the parameter of interest. Figure 12 shows
that for most parameter regimes, it is always best to increase the
recovery rate, g, as a method to reduce the fraction infected, I .
However, for low a and low b, it is best to decrease the
spontaneous infection term a, and for a window of intermediate b,
it is best to decrease the transmissive component b. The third plot
shows the results for the a value measured for obesity, and because
b is low here we are in a regime where it decreasing b has the most
effect, so this is the best intervention.

Many analytic models of network phenomenon assume the
transitivity, w, is zero, meaning there are no triangles in the
network. This is done to get the analytic expression presented here
(Eq. 2), which is not necessary to numerically integrate the pair-

wise equations, as presented in the results above. In the FHS
network, we observed that w is 0.64, suggesting human social
networks are quite transitive. We want to examine the importance
of w in predicting the fraction infected. For the observed bn value,
the effect of w is negligible, as shown in Figure 13. The reason is
that the dominant effect here is the spontaneous infection, which
does not depend on the network structure. This justifies ignoring w
for infections that have only low infectivity terms. However, for
large bn values (the equivalent of R0*2 is shown in Figure 14) w
has a more pronounced effect. While for a purely infectious
process (blue line), at high w, a disease can die out, even for R0w1,
when aw0, this doesn’t occur, but w still slightly reduces the
spread. It also results in more observed spatial correlation of
infected individuals. Overall, there is very little effect of w in the
SISa model.

We’ve already discussed how changes in parameters of infection
affect the steady state prevalence, and we can consider this an
analysis of different types of public health interventions that
change rates of recovery, infection or network structure. In
previous analysis of the obesity epidemic done by Bahr et al [40]
they suggest a strategy of ‘pinning’ groups of people to stay in a
non-obese state, similar to vaccinating against an microbial
disease, as a method to remove the ‘infection’ from the population.
However, in the Bahr model this intervention works (if enough
people are ‘pinned’) because becoming non-obese is also
contagious, which we don’t find in this analysis. In the classical
infectious disease setting, vaccinating can lower Ro below the
threshold for disease invasion, but in the SISa model there is no
threshold, and so neither mechanism makes this an effective
strategy in the SISa model. Two other possible intervention
strategies come out of this model. Firstly, from Eq. 7 we can see
that the fraction infected decreases with CSI , the correlation of

Figure 11. Dependence of the equilibrium fraction infected and correlations on the rate of recovery from infection, g. Dependence of
the equilibrium fraction infected(A) and correlations (CSI :(B), CII :(C), CSS :(D)) on the rate of recovery from infection, g. Parameters are
a~0:019, w~0:64, n~3:0.
doi:10.1371/journal.pcbi.1000968.g011
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susceptible and infected people. If an intervention actively reduced
this number, by isolating or clustering infected people, this could
reduce the prevalence. Secondly, the fraction infected could be
reduced if it were possible to make the ‘susceptible’ state also
contagious through contacts.

Discussion

The SISa model offers a framework for quantitatively analyzing
and predicting the public health affects of socially contagious

phenomenon. Using a longitudinally measured health outcome
and social network data, the SISa model can be used to determine
the dynamics of a health trend in terms of rates of acquisition,
recovery and inter-personal transmission. From these rates, the
relative importance of social contagion can be determined, and
changes in prevalence over time can be predicted. The framework
can also be used to examine how these rates themselves change
over time, helping to understand the mechanisms behind drastic
changes in disease prevalence, such as in the obesity epidemic
current effecting the United States. Finally, understanding the

Figure 12. Determining the best parameter to target in an intervention. This graph compares interventions which act to change different
parameters of infection (transmission (A), ‘automatic’ infection (B), recovery (C)). Shown is the rate of change of the fraction infected at equilibrium
with respect to a change in various parameters of infection. The y axis labels represent the absolute change in the percent infected for a change of
0.01 in one of the parameters. Changing a is better for small b and changing g is best for larger b. For intermediate b, changing b is best. Parameters
are g~0:035, w~0, n~3:0.
doi:10.1371/journal.pcbi.1000968.g012

Figure 13. Dependence of the equilibrium fraction infected and correlations on the network transitivity, w. The dependence of the
equilibrium fraction infected(A) and correlations (CSI :(B), CII :(C), CSS :(D)) measured from the pair-wise equations on the network transitivity, w. For
the parameters measured for the transmission of obesity, shown here, there is no strong dependence on w. Hence for studying the obesity epidemic
it is justified to ignore w to simplify calculations. Parameters are b~0:0050, g~0:035, n~3:0.
doi:10.1371/journal.pcbi.1000968.g013
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dynamics of a health behavior using the SISa model allows us to
evaluate the benefits of various interventions, especially those that
may work within social networks.

The prevalence of obesity in the Framingham Heart Study
cohort has increased from 14% in the 1970s to 30% in 2000, and
continues to increase. We find that the most recent rate of
becoming obese is 2% per year and increases by 0. % for each
obese social contact. The rate of recovering from obesity is 4% per
year, and does not depend on the number of non-obese contacts.
These results show that obesity has an infectious character: obesity
can be acquired through social contagion as well as through non-
social factors. Examining over 30 years of data, we find that these
rates have changed throughout the course of the study, with the
rate of becoming obese through mechanisms other than social
contagion increasing approximately twofold since 1970, and the
rate of transmission increasing approximately fourfold. The rate of
recovery, however, has changed little. These results suggest that
social norms are changing the propensity for becoming obese by
non-social mechanisms, and also magnifying the affect that obese
individuals have on their non-obese contacts. It is possible that
while causing changes in prevalence, these rates may also be
responding to changing prevalences (i.e. more obese people leads
to increased social acceptability of obesity, which leads to higher
rate of becoming obese), creating a positive feedback mechanism
and a continuously increasing obese fraction of the population. It
has been suggested that changing social norms that stigmatized
smoking may have lead to its decline [48], and just the opposite
may be true for obesity [49].

Using the SISa model with these parameter values estimated for
obesity, we can make predictions about the future of the obesity
epidemic and the important factors controlling it. Our models
suggest that if the most recent rates stay constant, the population
will stabilize at 42% obese. However, it is very likely that the rates
of obesity infection may continue to increase if successful

interventions are not conducted. Our results show that while the
rate of automatic development of obesity appears to have leveled
off in the past decade, the rate of transmission has been steadily
increasing.

This model allows us to can predict how much spatial
correlation is expected from a purely infectious process, and
compare this to what is observed in the data, which could be
influenced by confounding factors and selection bias in choosing
friends. A coefficient of 1 indicates that arrangement of infected
nodes is random, while higher values are indicative of spatial
correlations. We observed a correlation coefficient for obese
individuals of 1.30, which was quite close to what was predicted
from epidemic simulations (1.33). This suggests that infection
alone is sufficient for explaining the observed correlations, and
there may not be much selection bias or confounding factors in
effect. We also show that network transitivity is not predicted to
have a strong affect on prevalences when there is an automatic
component to infection. However, our model also shows that
contrary to popular belief, a contagious process on a network does
not always result in clustering of infected individuals. This is
especially true if there is a large automatic infection term, which is
likely with many trends and behaviors.

The SISa approach allows us to compare the effectiveness of
different classes of intervention. For the parameter range observed,
we find that decreasing the rate of transmission b is the most
effective intervention (largest decrease in prevalence per unit
decrease in rate), although decreasing the automatic infection a is
almost as effective. More generally, while we find that gaining
weight is contagious, we do not find that losing weight is
contagious. Thus it does not seem to be beneficial to ‘break-up’
clusters of obese individuals or ‘pin’ the weight of certain people in
these clusters. Our results actually suggest that clusters of obese
people serve to slow the spread of obesity by reducing social
contagion to non-obese others outside of the clusters. Another

Figure 14. Dependence on network transitivity, w, for larger transmission rates. The dependence of the equilibrium fraction infected (A)
and correlations (CSI :(B), CII :(C), CSS :(D)) measured from the pair-wise equations on the network transitivity, w. For larger b=a, w slightly decreases
the fraction infected by leading to more spatial correlation of infected individuals. Parameters are b~0:02, g~0:035, n~3:0.
doi:10.1371/journal.pcbi.1000968.g014

Modeling Social Contagion in Networks

PLoS Computational Biology | www.ploscompbiol.org 13 November 2010 | Volume 6 | Issue 11 | e1000968

5



possible intervention would involve somehow facilitating the social
spread of becoming non-obese (losing weight), creating a bi-
directional transmissive process.

One possible limitation of this study is the incompleteness of the
social network dataset used. Because the Framingham Heart Study
was not designed as a study of social networks, no attempt was
made to capture all of a person’s important social contacts. Many
close friends of a person could be missing (usually only one friend
per person was recorded) and family and coworkers who play only
a small part in ones actual social network may have been counted.
However, even if under-sampling of real-world contacts did occur
in the FHS Network, it does not change our results qualitatively:
our data clearly show that rates of becoming obese increase with
the number of ‘infected’ contacts (i.e. is contagious) while the rate
of ‘recovery’ to a non-obese state does not depend on contacts.
However, under-sampling could quantitatively effect our mea-
surement of the rate constants. If a constant number of contacts for
each person were missed, our estimate of the y intercept of the
transition graphs would be shifted up from its true value, and the
actual a would be smaller than the a we measured. If a constant
fraction of contacts for each person were missed, then our estimate
of the x axis would be compressed from its true value and the slope
would be increased, so then the actual value of b would be smaller
than the b we measured. While it is likely that the FHS network
underestimates the total number of contacts, the relationship to
the number of ‘influential’ contacts is unclear. In this sense, the
observed value of the transmission rates, b, are network
dependent. Additionally, network connections may be weighted
differently according to their ability to transmit behaviors.
Longitudinal studies designed specifically with the intent of
measuring social networks and health, which carefully define
contacts, such as by amount of time spent together per day,
influence, etc, are an important area for future research.

It has recently been suggested that certain, particular types of
latent homophily, in which an unobservable trait influences both
which friends one chooses and current and future behavior, may
be impossible to distinguish from contagion in observational
studies and hence may bias estimates of contagion and homophily
[50]. The circumstances under which this is likely to be a serious
source of bias (e.g., whether people, empirically, behave in these
sorts of ways), and what (if anything) might be done about it
(absent experimental data of the kind that some new networks
studies are providing [22]) merits further study. Observational
data invariably pose problems for causal inference, and require
one set of assumptions or another to analyze; the plausibility of
these assumptions (even of standard ones that are widely used)
warrants constant review.

The SISa model as presented here assumes that all individuals
have the same probability of changing state (though not everyone
will actually change state within their lifetime). It is clearly possible,
however, that there is heterogeneity between individuals in these
rates. We do not have sufficient data on obesity in the
Framingham dataset to explore this issue, which would require
observing numerous transitions between states for each individual.
Exploring individual differences in acquisition rate empirically is a

very interesting topic for future research, as is extending the
theoretical framework we introduce to take into account individual
differences.

The results we have presented here reiterate an important
general principle of network processes: networks tend to magnify
whatever they are seeded with, but they must be seeded with
something. The increase in obesity is not purely a network-
diffusion phenomenon. Automatic infection serves to start and
continuously seed the epidemic. Here we show that the dominant
process in the increasing prevalence of obesity is contact-
independent weight gain; however, the rate of interpersonal
transmission contribute significantly to the overall prevalence and
appears to be increasing steadily over time. Thus consideration of
social transmission and network effects is an important issue for
health and policy professionals.

Supporting Information

Table S1 Summary statistics for the Framingham Heart Study
network at each exam. Out-degree is the number of contacts
named by an individual. Total degree includes both those who
named an individual and those who were were named by an
individual. Only friendships are directional, other contacts are
symmetrical. Phi (Q) is the transitivity of the network. CSI and CII

are the spatial correlations between susceptible and infected, and
infected, individuals, respectively. N is the number of people for
whom both social network and obesity data was available for at a
given exam.
Found at: doi:10.1371/journal.pcbi.1000968.s001 (0.01 MB PDF)

Table S2 Summary of results from regression of probability of
transitioning between states and the number of contacts in a given
state, similar to those shown in Figure 3. n = non-obese, o = obese.
The probability of transitioning from ‘not obese’ to ‘obese’
increases in the number of ‘obese’ contacts (A), and doesn’t depend
on the number of ‘not obese’ contacts (B). Conversely, the
probability of recovering to the ‘not obese’ state does not depend
on the number of ‘not obese’ contacts (D) or the ‘obese’ contacts
(C)). After dividing by the time between exams, the slope of (A)
gives b, the intercepts of (A) and (B) give a, and the intercepts of
(C) and (D) give g.
Found at: doi:10.1371/journal.pcbi.1000968.s002 (0.01 MB PDF)

Text S1 Deriving pairwise network equations for heterogeneous
networks.
Found at: doi:10.1371/journal.pcbi.1000968.s003 (0.15 MB PDF)
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Deriving pairwise network equations for heterogeneous networks

In the main text, the pairwise equations were derived assuming all individuals had the same number of

contacts. This allowed us to reduce the dynamics to three di↵erential equations (after applying a moment

closure approximation) tracking the changes in the number of pairs of the form [AB] . Now we relax the

assumption of homogeneity, and track pairs for each class of individuals, where classes are defined by the

total number of contacts an individual has. This analysis follows that presented in Eames and Keeling, 2002

[1].

Term Description

a rate of spontaneous infection

g rate of recovery

� rate of transmission through contact

[n] # of individuals with n contacts

[nm] # of pairs of individuals with n and m contacts

[A] # of A individuals

[An
]

⇤
# of A individuals with n contacts

[AnBm
] # of edges between an An

and a Bm
individual

[AnB]

⇤
=

X

m

[AnBm
] # of B contacts of all An

’s

[AnBmCq
] # of triples with Bm

having both An
and Cq

as contacts

Table 1: notation used in pairwise equations for heterogeneous networks

Table 1 summarizes the types of variables tracked with this approach. After describing some variables in

terms of others, only those that are starred (*) remain, for a total of 3k equations, where k is the maximum

number of contacts of any individual in the network. Whenever there is a sum, it is over all possible values

for the number of contacts an individual has, i.e

X

n

implies

kX

n=0

. Note that while in the main text we wrote

equations for the fraction of individuals in various classes, here we have left the equations for the absolute

1



numbers, for simplicity of notation.

d

dt
[In] = �[SnI] + a[Sn

]� g[In]

d

dt
[InI] =

X

m

d

dt
[InIm] = �(

X

m,q

([InSmIq] + [IqSnIm]) + [SnI] + [InS]) + a([SnI] + [InS])� 2g[InI]

d

dt
[SnI] =

X

m

d

dt
[SnIm] = �(

X

m,q

([SnSmIq]� [IqSnIm])� [SnI]) + a([SnS]� [SnI]) + g([InI]� [SnI])

(1)

Many variables on the right hand side of these equations can be simplified until only 3k variables remain

(equal to the number of equations). Firstly, triples can be reduced to pairs using the moment closure

approximation [2]:

[AnBmCq
] =

(m� 1)

m

[AnBm
][BmCp

]

[Bm
]

(1� �+ �CAnCq
) (2)

CAnCq
=

[n][q]

[nq]

[AnCq
]

[An
][Cq

]

(3)

(4)

We still assume there is one � that describes the whole population. We could have �nmq, though this

would be unnecessarily complicated for most applications. Furthermore, we can approximate pairs of the

type [AnBm
] in terms of the smaller set of pairs of the type [AnB] using:

[AnBm
] =

[AnB][BmA]

[AB]

[nm]

P
q q[q]

nm[n][m]

(5)

Finally, since all individuals are either infected or susceptible, we can use:

[InS] = n[In]� [InI]

[SnS] = n[Sn
]� [SnI]

[I] =
X

n

[In]

[S] = N � [I]

(6)

2



This results in 3k equations and variables. If we want to find the spatial correlation discussed in the

paper, we can use:

CAB =

[AB]

X

n,m

[nm]

[n][m]

[An
][Bm

]

(7)
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