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BACKGROUND: Metastasis patterns in cancer vary both spatially and temporally. Network modelling may allow the incorporation of the
temporal dimension in the analysis of these patterns.
METHODS: We used Medicare claims of 2 265 167 elderly patients aged X65 years to study the large-scale clinical pattern of
metastases. We introduce the concept of a cancer metastasis network, in which nodes represent the primary cancer site and the sites
of subsequent metastases, connected by links that measure the strength of co-occurrence.
RESULTS: These cancer metastasis networks capture both temporal and subtle relational information, the dynamics of which differ
between cancer types. Using these networks as entities on which the metastatic disease of individual patients may evolve, we show
that they may be used, for certain cancer types, to make retrograde predictions of a primary cancer type given a sequence of
metastases, as well as anterograde predictions of future sites of metastasis.
CONCLUSION: Improvements over traditional techniques show that such a network-based modelling approach may be suitable for
studying metastasis patterns.
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No disease exists in isolation (Goh et al, 2007). Whether it is in
a predisposing factor or through a shared environment, or
whether it is in regards to aetiology or progression, commonality
may be shared among diseases within a single individual or
within parts of the abstract space of diseases across a population
(Barabasi, 2007; Loscalzo et al, 2007). Cancer is increasingly
recognised not as a single all-encompassing disease, but rather
as a multitude of diseases with, in certain cases, surprisingly
disparate characteristics (Fearon, 1997; Golub et al, 1999).
Although this is ostensibly true on a genetic level, the overarching
biological and physical mechanisms by which cancer operates
nonetheless remain quite similar – one of its hallmarks being the
acquisition of the ability to spread to other parts of the body
(Hanahan and Weinberg, 2000). Indeed, such metastases are
the cause of a majority of cancer-related deaths (Sporn, 1996;
Hanahan and Weinberg, 2000; Chambers et al, 2002; Gupta and
Massagué, 2006).

Although metastasis is important for systemic tumour expan-
sion, it is a highly inefficient process, with millions of cells being
required to disseminate to allow for the selection of cells aggressive
enough to survive the metastatic cascade (Chambers et al, 2002;
Gupta and Massagué, 2006). This cascade is a series of sequential
steps, which include the shedding of cells directly into the
circulatory system or indirectly through the lymphatic system,

survival within the circulation followed by extravasation into the
new surrounding tissue to initiate growth at a secondary site, and
finally induction of angiogenesis to maintain that growth. Only
when cells have overcome all these selective barriers do they
manifest themselves as clinically visible metastases, or so-called
macrometastases (Holmgren et al, 1995; Chambers et al, 2002;
Gupta and Massagué, 2006).

Paget (Paget, 1889) proposed over a century ago that
disseminated cancer cells only colonise choice organ microenviron-
ments that are compatible with their growth. This ‘seed and soil’
hypothesis has endured up to this day, largely confirmed through
both clinical and laboratory observations. Not only must the ‘soil’,
the target organ, harbour a viable niche that can permit, if not
facilitate, the initial survival of extravasated cancer cells, but the
‘seeds’ – these extravasated cancer cells – must also have developed
the molecular capabilities to effectively colonise the soil (Fidler,
2003; Gupta and Massagué, 2006).

However, blood flow characteristics and the structure of the
vascular system may also be an important contributor to
metastatic dissemination patterns (Chambers et al, 2002; Fidler,
2003). Nonetheless, it was observed through autopsy studies that in
breast and prostate cancer, larger numbers of bone metastases
than would be expected based on blood flow arguments alone were
found (Weiss, 1992). In contrast, fewer numbers of skin metastases
than expected were found for bone, stomach, and testicular
cancers. It thus appears that some tumour type –organ pairs may
be positively disposed toward metastasis formation, some
negatively, and some just what blood flow patterns would dictate
(Hart, 1982; Zetter, 1990; Weiss, 1992; Fidler, 2003).Received 13 March 2009; revised 19 June 2009; accepted 3 July 2009
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To date, study of such organotropic dissemination patterns
have relied primarily on autopsies. These have all been relatively
small-scale studies (Abrams et al, 1950; Weiss et al, 1988;
Weiss, 1992; Disibio and French, 2008). However, we may now
study these patterns using computational methods on large data
sets. Disease ‘comorbidity’ can be thought of and analysed as a
network (Lee et al, 2008). Indeed, cancer contains many
manifestations of networks at various levels of organisation,
including the genetic (Tavazoie et al, 1999; Aggarwal et al, 2006),
cellular (Vogelstein et al, 2000; Irish et al, 2004), and phenotypic
(Hidalgo et al, 2009). We argue that a topographic network for
metastases can be constructed as well; here, the nodes represent
sites where metastases may arise and links represent the co-
occurrence of such metastases. Such a network dynamically
evolves as cancer progresses to more advanced stages. One may
imagine a sequence of metastatic events in a patient as a trajectory
on this dynamic cancer metastasis network. Such a network may
yield further insights into the nature and patterns of metastatic
dissemination.

Medicare data allow us to look at patterns of metastatic
dissemination on a massive scale, across a broad range of cancer
types and secondary sites. The ability to do this is aided not only
by the sheer size of the data set, but also by the fact that the data
are diagnosis driven. As opposed to data derived from autopsy
studies, this provides the advantage of being more clinically
relevant in terms of patient management – each diagnosed
metastasis at a secondary site is recorded as a separate event. In
addition, these data give us another dimension, that is, time.
However, it is important to note that this data set restricts our
patient population to those aged X65 years.

The aim of this study is not to compare cancers by pathological,
molecular, or genetic characteristics, as most studies do, but rather
to analyse progression dynamics by the anatomical site of origin. By
analysing cancer metastasis using networks, we can derive, quantify,
and compare the topographical patterns on a large scale. In addition,
we can analyse the dynamics of these networks and their structural
properties, using them as the basis for the development of better-
performing predictive algorithms. Using these networks as entities
on which the metastatic disease of individual patients evolve, we
hypothesise that we may make retrograde predictions of primary
cancer types given a sequence of metastases and anterograde
predictions of future sites of metastasis.

MATERIALS AND METHODS

Clinical data

We used the so-called Medicare Provider Analysis and Review
(MedPAR) records for 1990–1993, containing a comprehensive set
of all the Medicare claims of 13 039 018 elderly patients aged X65
years, who were hospitalised during this 4-year period (we
excluded the minority of Medicare beneficiaries o65 years). Such
records are highly complete and accurate and have been used for
epidemiological and other research (Fisher et al, 1990; Mitchell
et al, 1994; Christakis and Allison, 2006); the coverage of the
Medicare programme encompasses 35 million beneficiaries (Landon
et al, 2004). For every hospital visit, up to 10 disease diagnoses
are recorded in the International Classification of Diseases version
9 with Clinical Modification (ICD-9-CM) format. We extracted the
subset of patients who had at least one diagnosis within the range
of 140–239, which represent neoplasms in the ICD-9 classification
scheme. This subset contains 2 265 167 patients, with a total of
6 773 633 hospital visits. Of this subset, 1 420 538 patients had only
one neoplasm diagnosis, 488 623 had two, and 191 726 had three.
The maximum number of neoplasm diagnoses was 17 (two patients).
For each patient, we collapsed all neoplasm diagnosis records into a
single sequence of diagnoses, along with the number of hospital
visits, the number of neoplasm diagnoses, and the follow-up time.

Follow-up time was defined here as the length of time from the
diagnosis of the primary cancer to the last diagnosis of any disease.

We then separated patients into groups according to the
anatomical site of the primary tumour. The ICD-9 scheme codes
neoplasms based on anatomical location rather than histology or
other pathological characteristics, and thus our grouping is effectively
by ICD-9 number. Supplementary Table S1 shows the three-digit
ICD-9 codes corresponding to the 43 selected primary cancer types.
Certain groups are less specific than others and include more
biologically dissimilar tumour types. Certain groups may also contain
many more patients than others, reflecting the nonuniform incidence
of cancer based on tissue type and anatomical site. Nonetheless, this
grouping allows for a reasonably high-resolution categorisation of
anatomical sites. For metastasis diagnoses, we used four- and five-
digit codes within 196, 197, and 198, which are similarly classified
according to anatomical location. Supplementary Table S2 lists the 27
metastatic sites selected, which include lymph nodes, as well as
distant tissues and organs.

Construction of cancer metastasis networks

Patients were censored by overall follow-up time. In other words, at
every point of time, only patients with a longer overall follow-up time
are considered. This ensures that the analysed patients are still in the
system at a particular point of time, and that we can be confident that
they have not died. The nodes of a cancer metastasis network
represent the distant sites where metastases may arise for a given
primary tumour type. The size of each node represents its conditional
incidence or hazard. We defined the incidence hazard function as

hX;metðtÞ ¼
mmetðtÞ
NXðtÞ

ð1Þ

where mmet(t) is the number of diagnoses of metastasis met at time t,
and NX(t) is the number of patients remaining at time t (where all the
patients with an overall follow-up time less than t are censored) for
primary tumour type X. We used discrete times of 1 month, so
therefore t¼ ti–ti – 1,i¼ 0y48. The cumulative hazard for an X and
met pair is then simply:

HX;metðtÞ ¼
Xt

t0¼0

hX;metðt0Þ ð2Þ

To quantify the dynamics of metastasis development, we looked at
the incidence of metastases in terms of co-occurrence at every point
of time. This allows us to establish links between the primary tumour
and metastasis sites, as well as between different metastasis sites for
multiple cases.

Co-occurrence measures

We quantified co-occurrence using two measures, the j-correla-
tion (Pearson’s correlation between dichotomous variables) and
relative risk (RR). The j-correlation is defined as:

jX;ijðtÞ ¼
NXðtÞCijðtÞ $miðtÞmjðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

miðtÞmjðtÞ½NXðtÞ $miðtÞ&½NXðtÞ $mjðtÞ&
p ð3Þ

where Cij(t) is the number of co-occurrences at time t. i and j
represent particular sites of metastasis or the primary tumour itself
(in other words, one may discover links either between the
primary tumour and specific sites of metastasis, or between two
different sites of metastasis). X represents the primary tumour
type. t¼ ti – ti – 1,i¼ 0y48. RR is defined as:

RRX;ij ¼
NXðtÞCijðtÞ
miðtÞmjðtÞ

ð4Þ

When i and j are observed together more than random chance
would dictate, RR 41 and j 40. Although relative risk is used
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quite commonly in the medical literature, it has certain drawbacks
when used in this context. RR tends to be biased toward higher
values when looking at metastases of low incidence, whereas it is
biased toward lower values when looking at those of high
incidence. The j-correlation, on the other hand, is biased toward
zero when analysing the link between metastases of differing
incidence or prevalence. However, j tends to be the better
measure for analysing links across multiple cancer metastasis
networks, as its scale would fluctuate much less than that of RR.
This is because the values are better normalised to their respective
population sizes, even though the underlying patient population of
two primary cancer networks may be quite different.

Models for predicting the primary cancer site

On the basis of the metastatic patterns, it may be possible
to predict the site of a primary, occult cancer. Multinomial logistic
regression: We first used multinomial logistic regression (MLR)
to build an algorithm for predicting the site of a patient’s primary
cancer, given the vector of their sites of metastases. The data
were split into half, with patients randomly assigned to either a
training set or a test set. For MLR, we used information only on
whether a metastasis at a particular site was detected, disregarding
the time at which it was detected. We derived the coefficient
estimates with a hierarchical model using the training set, and
subsequently applied this model on the test set to assess its
accuracy. Usage of cancer metastasis networks (I): We then deve-
loped an algorithm using the metastasis networks, incorporating
the additional variable of time. Given a sequence of metastases,
M¼ {m1(t1),m2(t2),y,mn(tn)}, we define the following matrix:

OX ¼

hX;m1ðt1Þ hX;m1ðt1Þ ' jX;m1m2
ðt1Þ ' ' ' hX;m1ðt1Þ ' jX;m1mn

ðt1Þ
hX;m2ðt2Þ ' jX;m2m1

ðt2Þ hX;m2ðt2Þ ' ' ' hX;m2ðt2Þ ' jX;m2mn
ðt2Þ

..

. ..
. . .

. ..
.

hX;mnðtnÞ ' jX;mnm1
ðtnÞ hX;mnðtnÞ ' jX;mnm2

ðtnÞ ' ' ' hX;mnðtnÞ

2

6664

3

7775

ð5Þ

where X denotes the primary cancer type. Each primary cancer site
has its own metastasis network, and thus this matrix is a summary
of the properties of network X at those nodes and links specified
by M, the temporal sequence of metastases for a single patient. For
each patient, the predicted site of their primary cancer is the site X,
which yields the largest value of ||OX||.

Models for predicting secondary cancer sites (metastases)

Knowing the primary cancer type, it is clinically important to
know how likely it is that metastases may arise and where they may
occur, as this will change the staging of the disease, which in turn
will guide treatment options. Fractional method: In the medical
literature, metastasis patterns are often reported as percentages or
fractions, without any temporal information. For example, if 30%
of patients with breast cancer had or eventually became diagnosed
with bone metastases, then for a new breast cancer patient, we will
say that this patient has a 30% chance of developing a bone
metastasis. For each primary cancer type, we split the patients
randomly into either a training set or a test set. Using the training
set to derive the fractions of patients developing metastases to each
distant site, we then applied those fractions to the test set. We
sequentially analysed patients having nmets¼ 1, 2, 3, and 4
metastases. For each patient with primary cancer type X in the
test set, the probability of an accurate prediction, pf, is the fraction
of patients with primary cancer type X in the training set
developing mn, given m1,m2,y,mn – 1. However, we discard this
condition by analysing only the nth metastasis. That is, using
nmets¼ 3 as an example, we assume m1 and m2, so pf is simply the
probability of developing m3. This allows for more direct

comparisons. The overall accuracy is then the mean, p̄f. Usage of
cancer metastasis networks (II): With the fractional method as a
baseline for comparison, we developed an algorithm for predicting
future sites of metastases using cancer metastasis networks. We
may think of these networks as entities on which the metastatic
disease of individual patients evolve, and are able to incorporate
temporal dynamics, as well as subtle relational properties. We
developed cancer metastasis networks for each primary cancer
type using the training set. For each patient in the test set, the
probability of an accurate prediction for mn, pnet, given the
primary cancer type X and metastases m1,m2,ymn – 1, is calculated
by (see Figure 5A for a graphical summary):

pnet ¼

P
i;j2Q

Ptn

t¼0
fX;ijðtÞ

P
i;j2R

Ptn

t¼0
fX;ijðtÞ $

P
i;j2S

Ptn

t¼0
fX;ijðtÞ

ð6Þ

where Q are all the links connecting mn to the node for the primary
cancer site or the nodes m1,m2,ymn – 1, R are all the links from the
nodes m1,m2,ymn – 1 or the primary cancer node, S are all the
links between any combination of the nodes m1,m2,ymn – 1 or the
primary cancer node, and tn is the time corresponding to the
incidence of metastasis mn. Only jX,ij(t) with P-value o0.05 are
considered. We analysed separately patients having nmets¼ 1, 2, 3,
and 4 metastases. The overall accuracy is then the mean, p̄net. The
ratio p̄net/p̄f captures the improvement over the fractional method
of using these networks for prediction.

RESULTS

Cancer metastasis networks

We constructed cancer metastasis networks for 43 primary sites, as
listed in Supplementary Table S1. We then considered 27 possible
secondary sites of dissemination for these primary cancers, as
listed in Supplementary Table S2. Nodes represent metastasis sites,
and thus number 27 in each network. The incidence of different
types of cancer as captured by the data set is shown in
Supplementary Figure S1. The largest numbers of diagnoses are
for prostate, colon, lung, and bladder cancer. For the majority of
cancer primary sites, the pattern of metastatic dissemination sites
is quite selective, with a few sites having very strong links and
many others holding comparatively weaker links.

Cancer metastasis network dynamics

Metastasis conditional incidence (hazard) functions for cancers
arising at six primary sites are shown in Figure 1. Each curve
represents the hazard function for a particular secondary site.
Similarly, with the metastasis network links, we can plot their
dynamics over time. Figure 2A is the colon cancer-specific
metastasis network at t¼ 0, and Figure 2B shows the network at
t¼ 48 months. We can extract dynamical information from the
evolution of the network links over time. Figures 2C and D show,
for the array of all possible pair-wise links, the monthly increase in
the link strength. For any given pair, link strength representing the
likelihood metastases at one anatomical site will be found
simultaneously with metastases at the other site. Only statistically
significant links are shown. Figure 2C, which uses the phi measure
to characterise link strength, creates a more detailed picture of the
overall dynamics. Initially, a few links steadily and solidly increase.
As cancers progress, many more links are added, and link addition
becomes much more scattered, and thus covers many more link
possibilities. As a consequence, at t¼ 0, the strength distribution
of these links is narrow and centred about a relatively low strength
value (Supplementary Figure S2A). As the cancers progress, these
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distributions naturally shift toward higher strength values, and
evolve toward a more uniform profile.

Using the information on link dynamics for each network, we
can then compare the networks and determine how similar they
are to one another, across distinct cancer types. This takes into
account not only topography but dynamics as well. We measured
the pair-wise correlations between metastasis network links for
every primary cancer type. The correlation coefficient matrix is
shown in Supplementary Figure S3. Although the vast majority of
primary cancer types exhibit low correlation values with one
another based on this approach, a few do stand out: (i) ‘colon’ and
‘rectum and anus’, (ii) ‘lung and bronchus’ and ‘prostate’, (iii)
‘breast, female’ and ‘prostate’. Although ‘colon’ and ‘rectum and
anus’ should be expected to emerge as correlated, being of
essentially the same tissue, the other two pairs are less expected.
Breast and prostate cancer both metastasise with high affinity to
the bone (Yoneda, 1998), and are both slower-progressing cancers

(Peer et al, 1993; Barry, 2001), which may explain why the two also
emerged as a highly correlated pair in terms of the metastasis
network link dynamics. The correlation between lung cancer and
prostate metastasis dynamics is more puzzling. However, as this
analysis is looking at the links, and not the nodes, more subtle
mechanisms are at play, and so perhaps more in-depth experi-
mental research on lung and prostate cancer metastasis dynamics
seems warranted.

Topographical clustering

Results of the hierarchical clustering of the sites of primary tumour
and the sites of metastasis by their incidence hazard function are
shown in Figure 3 (t¼ 0 in Figure 3A and t¼ 48 months in
Figure 3B). At t¼ 0, primary cancer types are clustered in three
large groups with distinct patterns of metastasis development. The
first group, which includes the ovary, pancreas, gallbladder,
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rectum and anus, colon, small intestine, and stomach, very
strongly metastasise to the peritoneum, liver, and intra-abdominal
lymph nodes. The second group, which includes the hypopharynx,
oropharynx, tongue, thyroid, nasopharynx, floor of the mouth,
gum, larynx, and lip, metastasise strongly to the lymph nodes in
the head, face, and neck, and to a lesser degree, the bone and lung.
The third group, which includes cancers, such as lung, prostate,
bone, testis, kidney, liver, oesophagus, uterus, cervix, skin
(melanoma), and others, include cancers which at t¼ 0 tend to
exhibit metastasis profiles with broader specificity and compara-
tively lower magnitudes. Breast cancer, however, is clustered by
itself because of the strong affinity for the axillary lymph nodes.
Through all of this, it must also be kept in mind that different
cancers have differing proportions of the stages at which they are
presented at diagnosis, because of the varying natural histories and
different abilities in screening and detection (Halpern et al, 2008;
Jemal et al, 2008). However, this clustergram reveals a distinct

pattern arranged strictly by anatomical location. By t¼ 48, the
pattern becomes more perturbed, but much of the anatomical
arrangement present earlier is still preserved.

Prediction of the primary cancer site from a sequence of
metastases

The multinomial logistic regression model achieved an overall
accuracy of 51%, with most patients being classified as one of the
six major cancer types. Prostate was correctly classified (true
positive rate) 84% of the time, colon 80%, lung and bronchus 69%,
ovary 64%, larynx 61%, and female breast 56% (Supplementary
Table S3). The other cancer types had a true positive rate of o10%.
Hess et al, 2006 developed a similar MLR algorithm for predicting
the primary cancer site (nine sites) given a set of metastases. An
overall accuracy of 64% was achieved, which is slightly better than
the overall accuracy of our algorithm, but it must be kept in mind
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that we used 43 primary cancer sites (which includes many less
common sites).

Rather than classifying patients into one of the six major cancer
types, the network model for predicting the primary cancer site

classifies patients into many more categories. Eleven cancer types
achieved a true positive rate of 425%, most of which are less
common cancers (Supplementary Table S4). For example,
although almost all patients with colon cancer were classified
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into other categories, ovary had a true positive rate of 81%,
hypopharynx 75%, male breast 70%, pleura 46%, pancreas 40%,
small intestine 39%, female breast 37%, male genital 33%, lung
and bronchus 28%, cervix 27%, and female genital 26%. Even
though the overall accuracy may be less than that of the MLR
algorithm, the network model has the advantage of broader
specificity and sensitivity toward cancers of less common sites
(Supplementary Table S5). The true positive rates for those sites
exhibiting true positive rates 425% with either method are shown
in Figure 4.

Prediction of additional secondary cancer sites
(metastases)

Although the previous method should prove helpful in the case
of an occult primary neoplasm that – other than the sympto-
matic metastases – does not yet show on imaging, perhaps the
more clinically useful prediction is the forward prediction of
additional possible metastases. We therefore compared a cancer
metastasis network-based algorithm and a traditional fractional
method on patients with 1, 2, 3, and 4 metastases. Those results
are summarised in Table 1 and Supplementary Table S6.
Figure 5A is a graphical summary of the algorithm methodo-
logy. For patients with 1 metastasis, predicting m1 turns out
to be no better than using the fractional method. This is
expected, as the strength of those links directly connected
to the primary cancer node is proportional to their respective
metastasis incidences. However, with nmets41, the algorithm
with the network model performs better than the fractional
method for the majority of primary cancer sites (Figures 5B–D).
For nmets¼ 2, there are 29 out of 43 primary cancer sites where
p̄net/p̄f41, with the average value among those being 1.525 (max:
2.858). For nmets¼ 3, there are 35 primary cancer sites where
p̄net/p̄f41, with the average value among those being 1.819 (max:
3.683). For nmets¼ 4, there are 36 primary cancer sites where
p̄net/p̄f41, with the average value among those being 2.119
(max: 11.619). This shows that the network captures temporal
information and subtle relationships that would otherwise not be
considered, and hence, allows for better-performing predictive
algorithms.

Discussion

Through a large data set of cancer patients, we have inves-
tigated the topographical patterns of clinical metastasis
development using a network approach. Although the ‘seed
and soil’ hypothesis (Fidler, 2003) certainly still holds, both
anatomical proximity and anatomical connection seem to be
dominant factors when the analysis of metastatic sites includes
many more sites and many more primary cancer types. To
our knowledge, such a comprehensive study has not previously
been conducted, especially not one including the rarer cancer
types.

Our study has shown that treating secondary metastases as
separate, comorbid diseases allows the construction of cancer
type-specific metastatic progression networks. From these net-
works, we are able to analyse the dynamics of each cancer-specific
network and compare one network to another. Furthermore, we
are able to use these networks as the basis of predictive algorithms,
which we have shown in many cases to be better performing than
conventional algorithms. We note that there are also other types of
models one can build for comparison, such as a Markov model or a
Cox model with time-dependent covariates. However, these may be
better suited to smaller-scale studies with more detailed informa-
tion on the underlying variables.

In Figure 1, we showed that the profile of hazard functions for
certain types of cancer can be highly specific, such as in prostate
cancer, or it can have a much broader profile, such as in bladder
cancer. Broader profiles create for three possibilities. The first
possibility is that these cancer types truly do have lesser selectivity
in the sites of secondary dissemination. The second possibility is
that the cancer type categories as defined here encompass a broad
range of sub-classifications, each of which may exhibit distinct
patterns by themselves. A third possibility is that these cancer
types have tumours, which display more cellular heterogeneity,
with different clonal populations within the tumours possessing
different affinities to distant sites (Fidler, 1978, 2003).

In recent years, we have come to discover a number of molecules
that drive organ specificity, but it still does not necessarily
answer the question of why different types and subtypes of
cancer metastasise to specific secondary sites, and with
varied propensities. Consideration of the original predisposition
of the transformed cell of origin suggests several possibilities
that may explain these phenomena. Certain cell lineages
may express molecules that bias the metastatic efficiency
to various target organs. For example, both normal and cancerous
mammary epithelial cells express Receptor Activator of Nuclear
Factor kB (RANK) – the receptor for the osteoclast differentiation
factor Receptor Activator of Nuclear Factor kB ligand (RANKL)
(Dougall and Chaisson, 2006). Studies suggest that this receptor–
ligand combination may predispose breast cancer cells to colonise
bone (Roodman, 2004; Yoneda and Hiraga, 2005; Jones et al, 2006).
The developmental history of a cell may also predispose it to
activate expression of specific metastasis-promoting mechanisms
on malignant transformation. Lineage-specific signalling circuits
may create differential responses to the same oncogenic altera-
tions, or developmentally imprinted epigenetic modifications may
influence transcriptional accessibility of the transformed genome.
Therefore, one would expect cells that are developmentally similar
to act in a more similar manner than cells further apart in lineage.
Indeed, in Figure 3B, we see that at t¼ 48 months, a time when
most cancers have progressed to an advanced stage, the clustering
suggests that this developmental effect may have a role, in addition
to blood flow characteristics. The clustergram groups primary sites
into more or less three groups. The first group is composed of
abdominal sites connected through the hepatic portal system. The
second group is comprised of various sites in the torso, and the
third group is comprised of various sites in the head and neck.
Anatomical arguments seem to still dominate.
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Figure 4 Prediction of the primary cancer site from a sequence of
metastases. The primary cancer types for which the true positive rates
exceed 25% from each model are shown. The multinomial logistic
regression (MLR) algorithm takes into account the number of patients
in the respective categories, and therefore, a relatively rare cancer type
will be classified as a common cancer type with similar metastasis patterns.
The MLR algorithm and the network algorithm perform in different
ways: the MLR classifies everything into a few common cancer types,
whereas the network algorithm is able to differentiate between rarer
cancer types.
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Although no similar large-scale study has been carried out
comparing the metastasis development patterns by anatomical
site of a large numbers of different cancer types, the data set we
use does carry with it some limitations. The Medicare claims
data contain information on 96% of Americans X65 years of
age (Hatten, 1980). This provides excellent coverage of an
entire demographic, yet does not represent a cross-section of
the population-at-large in terms of age. The data set also does
not contain information on patients who were not hospitalised.
Within the data, diseases were recorded in the ICD-9-CM
classification scheme format and potential errors for using the
ICD classification scheme at entry, and disease coding in
general have been noted (Surján, 1999). However, Medicare
claims data have been shown to be both accurate (Zhang et al,
1999; Hennessy et al, 2007) and sensitive (Cooper et al, 1999).
Finally, the record of an event of metastasis is a function of its
clinical detection. Metastases are not typically one or two new
growths – they may number in hundreds or more, many of which

are below thresholds of clinical detection. Micrometastatic disease is
an important prognostic indicator (Pantel et al, 1999), but they will
escape detection and thus not be recorded. This restricts both the
spatial and temporal resolutions.

We have nonetheless been able to show that the cancer
metastasis network captures important and useful temporal and
relational information, and thus be able to serve as the basis for
better predictive algorithms. Using a network approach, additional
questions on metastatic dissemination can be explored – for
example, how network properties and characteristics change by
age, gender, race, disease stage, or treatment. In attempts to
explore these and other questions, the Surveillance, Epidemiology
and End Results (SEER)-Medicare linked data set may be a useful
resource (http://seer.cancer.gov). The study of more specific net-
works may yield further insights into the metastatic cascade and
the patterns of metastasis per se. In addition, coupling molecular
information underlying cancer with these phenotypic networks
may also prove useful, and possibly lead to better treatment of

Table 1 Accuracy of the network model in predicting the temporal sequence of metastases, by site of primary cancer, for nmets¼ 2 and nmets¼ 3

nmets¼ 2 nmets¼ 3

Primary site N p̄f (%) p̄net (%) p̄net/p̄f N p̄f (%) p̄net (%) p̄net/p̄f

Lip 28 12.7 15.5 1.228 5 10.6 0.2 0.014
Tongue 125 12.5 19.9 1.585 46 6.7 15.5 2.321
Salivary glands 103 12.0 18.9 1.579 34 12.7 29.6 2.324
Gum 32 27.2 19.9 0.731 13 14.2 12.9 0.909
Floor of mouth 56 19.4 31.5 1.620 13 20.6 34.9 1.694
Mouth, other 94 17.5 28.2 1.614 26 10.6 9.1 0.862
Oropharynx 68 12 .3 17.7 1.445 19 7.5 16.9 2.257
Nasopharynx 40 12.5 17.0 1.356 18 14.8 32.6 2.204
Hypopharynx 104 10.8 31.0 2.858 27 11.6 27.9 2.411
Oesophagus 503 11.2 13.4 1.197 174 11.0 16.2 1.478
Stomach 1514 13.9 23.8 1.713 530 12.3 18.4 1.500
Small intestine 375 17.5 14.7 0.838 132 14.8 17.8 1.207
Colon 7681 17.1 39.0 2.282 2870 15.1 24.7 1.632
Rectum and anus 2734 15.5 19.1 1.232 963 13.8 24.4 1.764
Liver 185 19.2 18.9 0.983 57 15.5 23.7 1.531
Gallbladder 439 23.4 29.1 1.241 172 18.5 34.7 1.876
Pancreas 1438 23.7 21.5 0.907 410 16.7 20.0 1.197
Peritoneum 155 14.5 14.8 1.024 100 11.4 22.3 1.956
Nasal cavities 61 16.3 14.9 0.916 32 17.5 27.3 1.561
Larynx 241 11.4 21.5 1.878 79 8.5 16.9 1.992
Lung and bronchus 9653 14.3 13.4 0.937 3546 14.5 18.9 1.303
Pleura 67 19.7 19.5 0.989 23 14.1 22.9 1.624
Thymus, heart, and mediastinum 78 10.8 6.6 0.607 21 9.7 8.0 0.817
Bone 107 26.0 29.3 1.126 29 30.4 29.1 0.959
Connective tissue 183 13.5 20.1 1.481 63 9.9 11.1 1.124
Skin, melanoma 247 10.0 21.2 2.132 119 8.7 21.7 2.501
Skin, other 343 11.8 12.1 1.027 114 12.1 20.6 1.695
Breast, female 3129 17.8 20.4 1.148 1463 19.2 25.5 1.333
Breast, male 47 13.1 25.5 1.952 19 14.8 34.1 2.294
Cervix 310 12.0 15.6 1.300 144 11.1 18.2 1.638
Uterus 979 13.2 24.5 1.858 491 12.8 17.1 1.343
Ovary 2138 21.3 20.3 0.950 1355 18.1 22.1 1.221
Genital, female other 198 9.7 13.7 1.421 78 8.4 16.0 1.911
Prostate 5315 34.8 22.4 0.644 1321 34.5 29.4 0.851
Testis 10 13.4 19.2 1.430 6 12.8 47.2 3.683
Genital, male other 34 10.9 12.7 1.168 6 6.7 20.1 3.017
Bladder 1329 10.5 11.7 1.119 531 11.0 13.6 1.232
Kidney 1220 13.6 18.2 1.344 488 13.2 21.1 1.599
Eye 36 17.9 10.7 0.597 7 17.7 8.9 0.504
Brain 77 36.7 30.6 0.834 25 23.2 24.7 1.062
Nervous system, other 26 24.6 14.6 0.596 10 17.4 10.8 0.618
Thyroid 257 12.7 23.7 1.857 65 12.6 21.2 1.678
Other endocrine 32 11.9 7.0 0.589 9 13.9 34.7 2.485

p̄f is the mean accuracy for the fractional method, p̄net is the mean accuracy for the network model, and p̄net/p̄f is their ratio. N is the number of patients in each case.
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metastatic cancer. At the very least, these metastasis networks may be
used to identify a likely sequence of metastases in a patient, and thus
guide diagnostic tests and specific treatment targeting those sites.
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