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Abstract

The use of networks to integrate different genetic, proteomic, and metabolic datasets has been proposed as a viable path
toward elucidating the origins of specific diseases. Here we introduce a new phenotypic database summarizing correlations
obtained from the disease history of more than 30 million patients in a Phenotypic Disease Network (PDN). We present
evidence that the structure of the PDN is relevant to the understanding of illness progression by showing that (1) patients
develop diseases close in the network to those they already have; (2) the progression of disease along the links of the
network is different for patients of different genders and ethnicities; (3) patients diagnosed with diseases which are more
highly connected in the PDN tend to die sooner than those affected by less connected diseases; and (4) diseases that tend
to be preceded by others in the PDN tend to be more connected than diseases that precede other illnesses, and are
associated with higher degrees of mortality. Our findings show that disease progression can be represented and studied
using network methods, offering the potential to enhance our understanding of the origin and evolution of human
diseases. The dataset introduced here, released concurrently with this publication, represents the largest relational
phenotypic resource publicly available to the research community.
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Introduction

There are no clear boundaries between many diseases, as
diseases can have multiple causes and can be related through
several dimensions. From a genetic perspective, a pair of diseases
can be related because they have both been associated with the
same gene [1,2], whereas from a proteomic perspective diseases
can be related because disease associated proteins act on the same
pathway [3–9].

During the past half-decade, several resources have been
constructed to help understand the entangled origins of many
diseases. Many of these resources have been presented as networks
in which interactions between disease-associated genes, proteins,
and expression patterns have been summarized. For example, Goh
et al. created a network of Mendelian gene-disease associations by
connecting diseases that have been associated with the same genes
[1] (see also Feldman et al. [2]), whereas Lee et al. constructed a
network in which two diseases are linked if mutated enzymes
associated with them catalyze adjacent metabolic reactions [10].
Network studies in the proteomic front have studied large protein
interaction networks, like the ones created by Rual et al. [3] and
Stelzl et al. [4], in an attempt to understand diseases like inherited
ataxias [5] or Huntington’s disease [6]. Moreover, in the gene

expression front, microarray expression profiles and other cellular
level information have been used to explore networks in
inflammation [7], breast cancer [8], and brain disease [9].

While progress on the genetic and proteomic fronts has been
impressive [1,10], much of the available resources overlook the
fact that we have extensive and continually updated phenotypic
information for humans – namely, patient clinical histories.
Indeed, hospitals and insurance programs constantly collect
detailed records for millions of patients. These datasets contain
information on disease associations and progression. For example,
such population-based disease associations could be used in
conjunction with molecular and genetic data to help us uncover
the molecular origins of diseases. Despite the potential utility of
population based disease associations, extensive datasets linking
diseases based on comorbidity associations do not exist, partly
because access to extensive medical records is limited.

Typically, we say that a comorbidity relationship exists between
two diseases whenever they affect the same individual substantially
more than chance alone. One of our primary goals here is to make
available pairwise comorbidity correlations for more than 10
thousand diseases reconstructed from over 30 million medical
records. For completeness and utility, we organize the results in 18
different datasets. Each summarizes phenotypic associations
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extracted from four years worth of ICD9-CM claims data at the 5
and 3 digit level. Results are grouped into subsets of race, gender,
and both race and gender (see SM). To facilitate their use, the
datasets are available as a bulk download (http://hudine.neu.edu/
resource/data/data.html) or through a searchable web interface
(http://hudine.neu.edu) that allows researchers, doctors and
patients to explore these disease networks graphically, through
an interactive Flash application, and numerically, by allowing
them to generate tables summarizing the associations between a
particular disease and all other diseases.

In the past, comorbidities have been used extensively to
construct synthetic scales for mortality prediction [11,12], yet
their utility could exceed their current use. Studying the structure
defined by entire sets of comorbidities might help the understand-
ing of many biological and medical questions from a perspective
that is complementary to other approaches. For example, a recent
study built a comorbidity network in an attempt to elucidate
neurological diseases common genetic origins [13]. Heretofore,
however, neither this data nor the data necessary to explore
relationships between all diseases is currently available to the
research community. Hence, here we decide to provide this data
in the form of a Phenotypic Disease Network (PDN) capturing all
diseases as recorded through medical claims. Additionally, we
illustrate how a PDN can be used to study illness progression from
a dynamic network perspective by interpreting the PDN as the
landscape where illness progression occurs and show how the
network can be used to study phenotypic differences between
patients with different demographic backgrounds. Furthermore,
we show that the local structure of a disease in the network, as
characterized by its degree or number of connections, is associated
with disease mortality. Finally, we study the directionality of
disease progression, as observed in our dataset, and find that more
central diseases in the PDN are more likely to occur after other
diseases and that more peripheral diseases tend to precede other
illnesses. We also find that patients diagnosed with diseases that
tend to be preceded by other conditions tend to die sooner than
those diagnosed with conditions that tend to precede other
diseases. Together, these results and resources open new

opportunities for biomolecular, bioinformatic and public health
approaches to disease.

Methods

Source Data and Study Population
Hospital claims offer reliable, systematic, and complete data for

disease detection [14–16]. Each record consists of the date of visit,
a primary diagnosis and up to 9 secondary diagnoses, all specified
by ICD9 codes of up to 5 digits. The first three digits specify the
main disease category while the last two provide additional
information about the disease. In total, the ICD-9-CM classifica-
tion consists of 657 different categories at the 3 digit level and
16,459 categories at 5 digits. For a detailed list of currently used
ICD9 codes see www.icd9data.com. We compiled raw Medicare
claims [17,18] based on so-called MedPAR records regarding
hospitalizations for 1990–1993. Medicare is the US government’s
health insurer, and it has information on 96% of all elderly
Americans whether they seek medical care or not [19].

For the 32 million elderly Americans aged 65 or older enrolled
in Medicare and alive for the entire study period, there were a
total of 32,341,347 inpatient claims, pertaining to 13,039,018
individuals (the remaining individuals were not hospitalized at any
point during this period). Demographically, our data set consists of
patients over 65 years old (see Fig 1A for the age distribution) and
is composed mainly of white patients, with a higher percentage of
females (58.3% Fig 1B). Yet, the data set is large enough to
estimate race and gender specific comorbidity patterns.

Data Limitations
The medical claims were made available to us is in the ICD-9-

CM format, representing a controlled nomenclature constructed
mainly for insurance claim purposes. Therefore, in some cases,
more than one code corresponds to a particular disease, whereas
in other cases codes are not specific enough for research purposes.
For example, at the 5-digit level there are 33 diagnoses associated
with hypertension, which reduce to five at the 3-digit level. Other
times, the code is for a symptom such as ‘‘dehydration’’ which
cannot be assigned to any one diagnosis. The vast majority of
diseases, however, do map reliably to ICD9 codes.

While hospital claims have been proposed as a reliable method
for disease detection [14–16], our data does not capture a
complete cross section of the population. Our dataset consists of
medical claims associated with hospitalizations of elderly citizens
in the United States; thus, it contains limited information about
diseases that are not common among elders from an industrialized
country, such as many infectious diseases or pregnancy-related
conditions. Nor does it contain information on patients who were
not hospitalized and who instead seek solely outpatient care.
Hence, it is important to interpret our results in the context of a
population of elderly citizens in an industrialized country.

Quantifying the Strength of Comorbidity Relationships
To measure relatedness starting from disease co-occurrence, we

need to quantify the strength of comorbidities by introducing a
notion of ‘‘distance’’ between two diseases (see Text S1). A
difficulty of this approach is that different statistical distance
measures have biases that over- or under-estimate the relationships
between rare or prevalent diseases. These biases are important
given that the number of times a particular disease is diagnosed –
its prevalence- follows a heavy tailed distribution (Fig 1 C),
meaning that while most diseases are rarely diagnosed, a few
diseases have been diagnosed in a large fraction of the population.
Hence, quantifying comorbidity often requires us to compare

Author Summary

To help the understanding of physiological failures,
diseases are defined as specific sets of phenotypes
affecting one or several physiological systems. Yet, the
complexity of biological systems implies that our working
definitions of diseases are careful discretizations of a
complex phenotypic space. To reconcile the discrete
nature of diseases with the complexity of biological
organisms, we need to understand how diseases are
connected, as connections between these different
discrete categories can be informative about the mecha-
nisms causing physiological failures. Here we introduce the
Phenotypic Disease Network (PDN) as a map summarizing
phenotypic connections between diseases and show that
diseases progress preferentially along the links of this map.
Furthermore, we show that this progression is different for
patients with different genders and racial backgrounds
and that patients affected by diseases that are connected
to many other diseases in the PDN tend to die sooner than
those affected by less connected diseases. Additionally, we
have created a queryable online database (http://hudine.
neu.edu/) of the 18 different datasets generated from the
more than 31 million patients in this study. The disease
associations can be explored online or downloaded in
bulk.

From the Disease to the Diseasome
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diseases affecting a few dozen patients with diseases affecting
millions.

We will use two comorbidity measures to quantify the distance
between two diseases: The Relative Risk (RR) and w-correlation
(w). The RR of observing a pair of diseases i and j affecting the
same patient is given by

RRij~
CijN

PiPj
ð1Þ

where Cij is the number of patients affected by both diseases, N is
the total number of patients in the population and Pi and Pj are the
prevalences of diseases i and j. The distribution of RR values found
in our data set is shown in Fig 1 D. The w-correlation, which is
Pearson’s correlation for binary variables, can be expressed
mathematically as:

wij~
CijN{PiPjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PiPj N{Pið Þ N{Pj

" #q ð2Þ

The distribution of w values representing all disease pairs where
Cij.0 is presented in Fig 1 E. A discussion on the confidence
interval and statistical significance of these measures can be found
in the Text S1.

These two comorbidity measures are not completely indepen-
dent of each other (Fig 1 F), as they both increase with the
number of patients affected by both diseases, yet both measures
have their intrinsic biases. For example, RR overestimates
relationships involving rare diseases and underestimates the
comorbidity between highly prevalent illnesses, whereas w

accurately discriminates comorbidities between pairs of diseases
of similar prevalence but underestimates the comorbidity
between rare and common diseases (see SM Box 1). Given the
complementary biases of the two measures, we construct a PDN
separately for each measure and discuss their respective
relevance to specific disease groups.

One important question is how the predictive power of
comorbidity based relationships compares with that of heredity
and known genetic markers. Of the two measures discussed above,
the Relative Risk (RR) enjoys the most widespread use in the
medical literature [20–29], making it the most suitable for such
comparison. We find that the relative risk of being diagnosed with
one disease given another disease affecting a patient in our data
varies in the range RR,0.25–16 (Fig 1 D). Sibling studies have
found that the relative risk of having a disease given that a sibling
has the same disease typically ranges from RR,3 for type 2
diabetes [20] to RR,2–7 for early myocardial infarction [21],
,7–10 for bipolar disorder [22,23] and rheumatoid arthritis [24]
and ,17–35 for Crohn’s Disease [25]. Most of these values fall in
the range of relative risks associated with our observed
comorbidities. Hence, statistically speaking, the magnitude of the
disease risk predicted by comorbidity relationships is comparable
to that of family history. Furthermore, we can compare
comorbidity statistics with typical relative risk values found in
genetic susceptibility studies. For example, the relative risk of type
2 diabetes for carriers of the at-risk allele TCF7L2 ranges between
RR,1.45 and 2.41 [26], whereas the rs2476601 SNP in the
PTPN22 gene confers a genetic relative risk for rheumatoid
arthritis of RR,1.8 [27,28]. In contrast, the RR for a type 2
diabetes of a patient diagnosed with Ischemic Heart Disease is
RR,1.61, whereas a rheumatoid arthritis patient is at RR,3.64
for the disease if he or she is diagnosed with osteoporosis [29]. The

Figure 1. Data characteristics and basic comorbidity statistics. A. Age distribution for the study population. B. Demographic breakdown of
the study population. C. Prevalence distribution for all diseases measured using ICD9 codes at the 5 digit level. D. Distribution of the relative risk (RR)
between all disease pairs. E. Distribution of the w-correlation between all disease pairs. F. Scatter plot between the w-correlation and the relative risk
of disease pairs.
doi:10.1371/journal.pcbi.1000353.g001
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statistical strength of the observed comorbidities is therefore
comparable to that found in siblings and genetic susceptibility
studies, a favorable comparison that provides further motivation to
use comorbidity data to explore disease risk.

Results

The Phenotypic Disease Network
We can summarize the set of all comorbidity associations

between all diseases expressed in the study population by
constructing a Phenotypic Disease Network (PDN). In the PDN,
nodes are disease phenotypes identified by unique ICD9 codes,
and links connect phenotypes that show significant comorbidity
according to the measures introduced above.

In principle, the number of disease-disease associations in the
PDN is proportional to the square of the number of phenotypes,
yet many of these associations are either not strong or are not
statistically significant (see SM). Hence, we explore the structure of
the PDN by focusing on the strongest and most significant of these
associations. To achieve this, we offer two visualizations of the
PDN (see SM), the first constructed using RR (Fig 2 A) and the
second using w (Fig 2B and Text S1).

While there are many similarities between the two networks,
such as the proximity between nephritis and hypertension or
psychiatric disorders and poisoning, the overall structure of the
PDN and the specific disease groups present in each one of them
reflect the individual biases of the metric used to construct the
links. The network constructed using RR (Fig 2 A) is populated by
relatively infrequent illnesses and has visually discernable modules
that follow the ICD9 classification somewhat closely. In contrast,
the network constructed using w (Fig 2 B) is populated by highly
prevalent diseases with many connections across different ICD9
categories. Despite these differences between the two networks, we
do not argue in favor of one particular representation; they both
capture statistically significant associations at different prevalence
scales. Together, each offers a complementary representation of
the phenotypic disease network.

Disease Network Dynamics
While a network representation of diseases has many potential

applications, here we concentrate on three examples illustrating
the use of the PDN to study the illness progression from a network
dynamics perspective [30]. The PDN can be seen as a ‘‘map’’ of
the phenotypic space. This map allows us to study illness
progression as a dynamic network process in which patients
‘‘jump’’ from one disease to another along the links of the PDN
[30]. Our ability to fully develop such a view of diseases is limited,
however, by our data. While we can order diseases according to
the date they were diagnosed, we cannot exclude the possibility
that the observed progression is a result of our limited observation
window. For example, a patient in our data set can be diagnosed
with type II diabetes on the first visit and hypertension on the
second visit. Yet, lacking information on previous disease history,
we cannot conclude that diabetes precedes hypertension, as
hypertension could have been diagnosed at any earlier time point
not recorded in our data. Hence we begin our analysis using a
conservative approach in which we study possible consequences of
disease progression in a static network picture and continue, by the

end of the paper, to study the observed directionality of disease
progression, limiting any conclusions due to the aforementioned
biases.

These limitations require us to adopt a more conservative
approach in our analysis. Here we explore disease network
dynamics by asking three questions (Fig 3 A). Q1: Does illness
significantly progress along the links of the PDN? Q2: Is illness
progression different for patients of different races and genders?
Q3: Does the connectivity of a disease, as measured in the PDN,
correlates with higher lethality?

To answer the first question (Q1) we use a recently introduced
method to decide whether a node property spreads along the links
of a network [30] (see Text S1). We measure the average
correlation between diseases diagnosed in the first two visits and
those diagnosed in the 3rd and 4th visits for all patients with four
visits (N = 946,580). We controlled for the correlations inherent to
the dataset by repeating the procedure using a randomized set of
diseases for the first two visits extracted in such a way that the
prevalence of each disease in the randomized sets matches the one
observed in the original data. We find that diseases diagnosed in
the first two visits are more correlated with those diagnosed in the
last two visits than what we observe on our control case (Fig 3 B &
C). In a case-by-case basis, we can compare the correlations
between the real and randomized measures by calculating the
ratio H~!wwD

$!wwC , where !wwD is the average correlation between the
diagnoses received by a patient in his first two and last two visits
and !wwC is the average correlation found in the control case. The
distribution of H (Fig 3 D & E) reveals that inter-visit correlations
are larger than would be expected by chance for 95.6% of the
patients on the w-PDN and for 81.5% of the patients in the RR-
PDN (by a factor of 10 on average for the w-PDN and of 1.5 for
the RR-PDN). Therefore, it is a valid approximation to think of the
development of patients’ illnesses as a spreading process over a
PDN. We note that while the effect discussed above is present for
both the w and RR-based networks, it is more pronounced in the w-
PDN, suggesting a superior potential predictive power for the w-
representation. We find that this result is not affected by including
the individuals with four visits or not in the PDN (see Text S1).
This is because of the large number of observations and the
regularity of the observed disease correlations.

While our data does not allow us to be conclusive about the
directionality of disease progression, differences in the strength of
comorbidity relationships can still indicate differences in the
dynamics of illness progression. The reason is that patients affected
by a pair of diseases had traversed the link between them at some
point in time and in one of the two possible directions. Here, we
explore Q2 by looking at differences in the strength of the observed
comorbidities for patients from different ethnic background and
genders. For this we calculate the odds ratio for the difference in
comorbidity between diseases i and j as expressed in populations a
and b. Mathematically, the odds ratio is defined as

ORij a,bð Þ~
pij að Þ 1{pij bð Þ

" #

pij bð Þ 1{pij að Þ
" # , ð3Þ

where pij(a) = Cij(a)/Na is the probability that diseases i and j are
observed in a patient of population a.

Figure 2. Phenotypic Disease Networks (PDNs). Nodes are diseases; links are correlations. Node color identifies the ICD9 category; node size is
proportional to disease prevalence. Link color indicates correlation strength. A. PDN constructed using RR. Only statistically significant links with
RRij.20 are shown. B. PDN built using w-correlation. Here all statistically significant links where w.0.06 are shown.
doi:10.1371/journal.pcbi.1000353.g002
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Figure 3. The Phenotypic Disease Network and disease dynamics. A. Schematic representation of the three dynamical questions explore
here. B. Average w-correlation between diseases diagnosed in the first two and last two visits for the 946,580 patients with 4 visits (green) and when
we consider a randomized set of diseases for the first two visits (red). C. Same as B but for the RR-PDN. D. Ratio between the average w-correlation
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We discuss as an example a network showing differences in the
strength of comorbidities between white and black males. We
illustrate this on the subset of Figure 2 B in which all diseases
connected to Hypertension or Ischemic Heart Disease are shown.
In Figure 3 F, blue links connect diseases that are significantly
more comorbid for black males, whereas red links connect diseases
that are more comorbid for white males. This picture suggest that
ischemic heart disease, infarctions, hypercholesterolemia, and
pulmonary complications, among other diseases, tend to be more
comorbid in white males than in black males; whereas hyperten-
sion, diabetes, and renal and other disorders tend to be more
comorbid in black males than in white males. The structure
presented in Figure 3 F summarizes well known disease
associations, validating the ability of the PDN to explore gender
and race variations on comorbidity, which could help discern
disease etiology. Figure 5S shows a similar example for males and
females. Comparative studies like this one can be performed for
any disease using the project’s website (http://hudine.neu.edu).

Finally, we explore our third question (Q3) by showing that the
lethality of a disease is associated with its connectivity in the PDN.

We can quantify the connectivity of a particular disease by adding
the correlations between a disease and all other diseases to which it
is connected [31,32]. We use Kw

i ~
P

j
wij and KRR

i ~
P

j
RRij

respectively for the w- and RR-networks. Both Kw
i and KRR

i tell us
how embedded disease i is in the PDN; high values of Kw

i and KRR
i

indicate that disease i is strongly connected to many other diseases
in the PDN. To measure the lethality of a disease, we calculated
the percentage of people deceased within the 8 years following the
first diagnosis recorded in our database. We find that disease
connectivity and lethality are correlated for the w-PDN and the
RR-PDN (Fig 4 A & B). A simpler and contrasting hypothesis is to
test whether the lethality of a disease correlates with its prevalence
(Fig 4 C); we find that prevalence shows only a weak correlation
with lethality and cannot explain the effect seen in Fig 4 A & B.
We also find that the strength of the relationship between disease
connectivity and lethality is greater for some groups of diseases
than others (Table S3). For example, this relationship is strong for
neoplasms (Fig 4 D & E) whereas for mental disorders the
correlation is week (Fig 4 F) or even negative (Fig 4 G).

Figure 4. Disease connectivity and lethality. A. Scatter plot between the connectivity of a disease measured in the w-PDN and the percent of
patients that died 8 years after this disease was first observed in our data set. B. Same as A for the RR-PDN. C. percent of patients that died 8 years
after this disease was first observed in our data set as a function of disease prevalence. D. same as A showing only neoplasms. E. same as B showing
only neoplasms. F. same as A showing only mental disorders. G. same as B showing only mental disorders.
doi:10.1371/journal.pcbi.1000353.g004

among diagnoses received by a patient in its first two and last two visits relative to the control case. E. same as D but for the RR-PDN. F. Gender and
race differences. The subset of Fig 2 B where all diseases connected to hypertension and ischemic heart disease is shown. Blue links indicate
comorbidities that are strongest among black males; whereas red links indicate comorbidities that are strongest among white males (see legend).
doi:10.1371/journal.pcbi.1000353.g003
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A possible explanation for the observed correlation between
connectivity and lethality is that sicker patients accrue more
diagnoses and hence the observed correlation is just a restatement
of this trivial fact. We can rule this out by looking at the correlation
between the average connectivity of diseases diagnosed to patients
with a given number of hospital visits, diagnoses, and number of
years they remained alive after the last diagnosis was observed. We
performed this analysis by looking at data on the 7,878,255
patients for which we know the exact year of death; the remaining
patients were reported as either alive or unknown in our data set.
Figures 5 A and 5 B show the histogram for the number of visits
and diagnoses assigned to this set of 7,878,255 patients. Figures 5
C and 5 D show that there is a significant negative correlation
between the average connectivity of diseases observed in patients
with the same number of visits or diagnoses or the number of years
they survived after the last diagnosis was observed. Hence the
observed correlation between connectivity and lethality does not
come from a simple accumulation of diagnoses by sicker patients.
Our results indicate that the severity of a disease can be
approximated by its connectivity in the PDN for patients with
the same number of diagnoses, hence the structure of the PDN
matters as the location of a patient in the PDN is a predictor of
the number of years he is expected to remain alive. We also
notice that in this example the PDN created using w correlates
more strongly with the number of years a person survived than
the RR-PDN. In Text S1, we show that the observed correlation
between the connectivity in the PDN of diseases affecting a
patient and the number of years survived are robust to

simultaneous control for age, gender, number of diagnoses,
and number of visits.

Finally, we briefly analyze the directionality of disease progression,
as observed in our data, keeping in mind that the limited observation
period of our study limits our ability to be conclusive about disease
directionality because of the aforementioned reasons. Hence, we
interpret the following results as suggestive evidence of directionality
rather than as a proof. To reduce the noise levels of our analysis we
concentrate on links between diseases affecting at least 1 in 500
patients (0.2%), which from the size of our data set, are expected to
co-occur in at least 50 patients. At the 5 digit level our comorbidity
data contains 133,858 links connecting the 518 diseases affecting at
least 1 out of 500 patients.

Consider the link connecting diseases i and j. To assign a
direction to this link we begin counting the number of times
disease i was diagnosed before disease j and represent this number
as LiRj. When computing LiRj we disregard those cases in which
both diseases were diagnosed for the first time in the same visit, as
our data does not allow us to study precedence within the same
hospitalization; hence LiRj+LjRi#Cij. Most links connect diseases
with large differences in prevalence; hence we normalize LiRj by
the prevalence of the disease i using the formula liRj = (LiRj+1)/Pi,
where the factor of one is added to include, when taking ratios,
those cases in which LiRj is equal to zero. In such cases liRj = 1/Pi.
We introduce this normalization because the probability that a
disease is diagnosed before another disease is proportional to its
prevalence. Finally, we can assign a direction to a link by creating
a variable that, after controlling for the prevalence of a disease, is

Figure 5. Connectivity lethality control. A. Histogram with the number of visits for each patient for which the year of death is known. B.
Histogram for the number of diagnosis assigned to each patient for which the year of death is known. C. Correlation between the average
connectivity of the diagnosis assigned to a patient and the number of years survived after the last diagnosis was recorded for groups of patients with
the same number of hospital visits. D. Correlation between the average connectivity of the diagnosis assigned to a patient and the number of years
survived after the last diagnosis was recorded for groups of patients with the same number of total number of diagnosis assigned. Error margins in C
and D represent 95% confidence intervals.
doi:10.1371/journal.pcbi.1000353.g005
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positive if a disease tends to precede another disease (outgoing link)
and negative if a disease tends to come after the disease at the
other end of that link (incoming link). We define the directionality
liRj of the link connecting disease i to disease j as:

li?j~log10

li?j

lj?i

% &
ð4Þ

A value of liRj = 1 indicates that, after controlling for prevalence,
the probability a patient is diagnosed with disease i before it is
diagnosed with disease j is 10 times higher than the probability a
patient is diagnosed with disease j before being diagnosed with
disease i. Whereas a value of liRj = 2 indicates that the ratio between
this probabilities is equal to 100. Fig 6 A shows the distribution of
liRj calculated for the 133,858 links connecting diseases affecting at
least 1 out of 500 patients. We find that this distribution has a well
defined peak close to liRj = 0, indicating that the most common type
of link is that without a preferred direction. Despite this, there are a
substantial number of links that do appear to show a preferred

direction. We find that, out of the 133,858 links considered, 15,625
(11.7%) of them lie outside the liRj]-1,1[ whereas only 229 (0.2%) lie
outside the liRj]-2,2[ interval.

The directionality analysis allows us to extend our study of
disease connectivity and lethality to include the directionality of
the links connecting a disease to other diseases in the PDN. By
assigning a direction to the links connecting a disease with other
diseases in the PDN we can classify diseases into source and sink
diseases; source diseases being those whose links are more likely to
point away from them and sink diseases being those whose links are
more likely to point towards them. To capture this effect we define
the precedence of disease i as the sum of the directionality of the links
connecting a disease to all of its neighboring diseases in the PDN:

Li~
X

j

li?j ð5Þ

Li is positive for diseases that tend to come before other diseases
and is negative for diseases that tend to come after other diseases.

Figure 6. Directionality of disease progression. A. Distribution of l1R2 B. Disease precedence Li as a function of disease prevalence Pi. The inset
shows the same plot after removing the trend from disease precedence (Li* =LI+496.08log10(Pi)-2446.2) C. Disease connectivity calculated from the
w-PDN as a function of Li*. The green line shows the best fit for the 518 diseases with a prevalence larger than 1/500 (green circles) while the red line
shows the best fit for the 463 diseases at the center of the cloud (red points). The correlation coefficient is represented by r and its associated p-value
by p. D. Percentage of patients that died 2 and 8 years after being diagnosed with a disease with a given detrended precedence Li*. The green lines
show the best fit for all the 518 diseases (green circles) while the red lines show the fit for the 434 (top panel) and 465 (bottom panel) diseases at the
bulk of the cloud.
doi:10.1371/journal.pcbi.1000353.g006
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We find that Li is not independent of disease prevalence, as it
exhibits a slow, logarithmic, dependence on it (Figure 6 B). We can
remove the dependence of Li in the prevalence of a disease by
subtracting the trend directly from it. This allows us to obtain a
detrended measure of disease precedence (Li*, Figure 6 B inset)
which is independent of prevalence and can be used to explore the
information on lethality contained in the structure of the PDN.

Figure 6 C shows that Li* is negatively correlated with the
connectivity of a disease, indicating that highly connected diseases
in the PDN tend to come after other diseases, rather than before,
suggesting that highly connected diseases more likely represent
advanced stages of illness. Finally, we study the relationship
between disease precedence and lethality, finding that patients
diagnosed with sink diseases tend to die sooner than those
diagnosed with source diseases, as measured from our direction-
ality analysis in the PDN. We checked whether this result was just
a restatement of our previous finding, indicating that patients
diagnosed with highly connected diseases tend to die sooner than
those diagnosed with sparsely connected diseases, and found that
both effects are simultaneously significant (see SM). Furthermore,
our statistical analysis shows that for relatively short terms (2 years)
disease precedence is a better predictor of lethality than disease
connectivity, whereas disease connectivity appears to be a better
predictor of lethality than disease precedence for longer terms (8
years). Hence both, the connectivity and precedence of a disease,
carry important information on the burden that a given disease
signifies for patients affected by it.

Discussion

While there is a great deal of expectation that disease
associations are of enormous potential value to the research
community, the lack of phenotypic data available to complement
genotypic and proteomic datasets has limited scientific progress
towards elucidating the origins of human disease. Here we take a
step toward rectifying this situation by introducing an extensive,
publicly available data set quantifying comorbidity associations
expressed in a large population.

An important issue raised by calls for phenotypic network
information is the potential integration of phenotypic data with
genetic and proteomic data to better elucidate disease etiology.
There are, however, other potential applications of a network-based

approach to diseases. Phenotypic ‘‘maps’’ like the ones presented
here could be used to study the disease evolution of patients and
represent an ideal way to visualize and represent medical health
records in a future in which digital medical records will need to be
accessed by health care workers in a delocalized manner [33].

Here we have shown suggestive evidence that patients develop
diseases close in the PDN to those already affecting them. We also
showed that the PDN has a heterogeneous structure where some
diseases are highly connected while others are barely connected at
all. While not conclusive, these observations can explain the
observation that more connected diseases are seen to be more
lethal, as patients developing highly connected diseases are more
likely those at an advanced stage of disease, which can be reached
through multiple paths in the PDN.

Exploring comorbidities from a network perspective could help
determine whether differences in the comorbidity patterns
expressed in different populations indicate differences in biological
processes, environmental factors, or health care quality provided
for each population. Here we show as a first step that there are
differences in the strength of co-morbidities measured for patients
of different races and gender. The PDN could be the starting point
of studies exploring these and related questions. This is why we
make our data available to the research community at (http://
hudine.neu.edu)

Supporting Information

Text S1 Supplementary Material
Found at: doi:10.1371/journal.pcbi.1000353.s001 (2.33 MB
DOC)
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