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For repeated events, fixed-effects regression methods—which con-
trol for all stable covariates—can be implemented by doing Cox re-
gression with stratification on individuals. For nonrepeated events,
we consider the use of conditional logistic regression to estimate
fixed-effects models with discrete-time data. Known in the epi-
demiological literature as the case-crossover design, this method
fails when any covariate is a monotonic function of time. Hence, no
control for time itself can be included, leading to potentially spuri-
ous estimates. As an alternative, we consider the case-time-control
method for estimating the effect of a dichotomous predictor. This
method allows for the introduction of a control for time by revers-
ing the role of the dependent and independent variables. In contrast
to earlier work, we show that the method can be applied to data
that contain only uncensored cases, and that it is possible to con-
trol for additional covariates, both categorical and quantitative.
Simulation studies indicate that the case-time-control method is
substantially superior to the case-crossover method and to conven-
tional logistic regression. The methods are illustrated by estimating
the effect of a wife’s death on the hazard of death for her husband.
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1. INTRODUCTION

Fixed-effects methods have become increasingly popular in the analysis
of longitudinal data for one compelling reason: They make it possible
to control for all stable characteristics of the individual, even if those
characteristics cannot be measured (Halaby 2004; Allison 2005). Us-
ing widely available software, fixed-effects methods can be applied to
linear models (Greene 1990), logistic regression models (Chamberlain
1980), and Poisson regression models (Cameron and Trivedi 1998). For
event-history analysis, a fixed-effects version of Cox regression (partial
likelihood) is available for data with repeated events for each individual
(Chamberlain 1985; Yamaguchi 1986; Allison 1996). But fixed-effects
Cox regression is not feasible when no more than one event is observed
for each individual.

In this paper, we explore fixed-effects methods for nonrepeated
events using conditional logistic regression with discrete-time data.
There are several peculiar features of nonrepeated event data that make
a conventional fixed-effects approach problematic. As we shall see, none
of the available methods works well for covariates that change mono-
tonically with time (unless they are transformed into nonmonotonic
functions). For covariates that are not monotonic with time, one ap-
proach works well when those covariates are uncorrelated with time
but may be badly biased otherwise. Another method works well for co-
variates that are correlated with time, but only when the covariate is
dichotomous, a situation that may still find many applications.

2. AN EXAMPLE

To make things concrete, we shall consider these issues in the context of
an empirical example. Consider the following question: Does the death
of a wife increase the hazard for the death of her husband? We have
data on 49,990 married couples in which both spouses were alive and at
least 68 years old on January 1, 1993.1 Death dates for both spouses are

1To assemble a population-based sample of elderly couples, we linked
Medicare claims data and other files at an individual level (using individual identi-
fiers). We began with the 1993 Denominator File which includes 32,180,588 people
65 years of age or older. Based on Census data, we estimate that 13.2 million of these
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available through May 30, 1994. During that 17-month interval, there
were 5769 deaths of the husband and 1918 deaths of the wife.

Given data such as these, how can we answer our question? One
straightforward approach is to do a Cox regression for husband’s death
with wife’s vital status as a time-varying covariate. More specifically, let
ti be the husband’s time of death for couple i, in days since the origin
(January 1, 1993). If a death is not observed, then ti is the censoring time
(515 days). Let Wi(t) be a time-varying covariate coded 1 if the wife is
alive at time t and 0 otherwise. We postulate a proportional hazards
model

log hi (t) = α(t) + βWi (t) + δXi (1)

where hi(t) is the hazard for husband’s death at time t for couple i, α(t)
is an unspecified function of time, and Xi is a vector of time-invariant
covariates for couple i. This model may be estimated with standard
partial likelihood software.

Estimates for one such model are shown in the first two columns
of Table 1. “Black” is a dummy variable coded 1 for black race, otherwise
0. “Age” is the age in years on January 1, 1993. “Illness burden” is a
scale based on medical records for the three years prior to the start of
observation, with observed values ranging from 0 to 15. We see that the
hazard of death for blacks is approximately 7 percent higher than for
other races, but the effect is not statistically significant. On the other

people were in marriages where both spouses were 65 or older. From this file, we
identified husband/wife pairs using a method described by Iwashyna et al. (1998,
2000). The method exploits Medicare’s complex system of identification codes to
find spousal pairs, and it has a sensitivity of up to 80 percent. While representing a
majority of married people, these couples are somewhat more likely to be those in
which the husband had been employed and the wife had either never earned money
or earned less than her husband. However, in the current generation of elderly, this
is the modal pattern. The application of this method resulted in the identification
of 4,313,221 couples, 65 percent of the total population. Of this group, 3,247,729
are couples in which both members were older than 68. Out of this group, we
took a simple random sample of 50,000. We subsequently deleted ten cases due
to data inconsistencies, leaving 49,990 for analysis. For these couples, we have de-
tailed hospitalization information for three years prior to 1993 and mortality and
hospitalization information for both members of each couple until mid-1994. Us-
ing established methods of quantifying illness burden, we assigned each individual
a morbidity burden based on their medical records for the three years preceding
cohort inception (Zhang et al. 1999).



158 ALLISON AND CHRISTAKIS

TABLE 1
Cox Regression Estimates for Models Predicting the Hazard of Husband’s Death

Covariate Hazard Ratio p-Value Hazard Ratio p-Value

Black 1.07 .22 1.07 .23
Age 1.08 <.0001 1.08 <.0001
Illness burden 1.35 <.0001 1.35 <.0001
Wife dead 1.02 .86 — —
Wife died within 30 days — — 1.47 .07

hand, there is a highly significant coefficient for age, with each year of
age being associated with an 8 percent increase in the hazard. Each 1-
point increase in illness burden is associated with a 35 percent increase
in the hazard. There is, however, no evidence for an effect of wife’s death
on husband’s hazard of death.

One possible explanation for the null effect of wife’s death is that
any such effect may last for only a limited period of time. To investi-
gate this possibility, we estimated a second model in which the time-
dependent covariate for wife’s vital status was coded 1 if the wife had
died within the previous 30 days, otherwise 0. Results in the last two
columns of Table 1 offer modest support for this hypothesis. The haz-
ard for husband’s death is about 47 percent higher during the 30-day
period after wife’s death, with a p-value of .07.

Would we be justified in interpreting the hazard ratio for wife’s
death within 30 days as representing a causal relationship? An obvious
objection is that these models omit many variables that are common to
husbands and wives, or at least highly correlated, and which also have
an impact on mortality. Possibilities include income, education, dietary
habits, exercise patterns, smoking behavior, and drinking behavior. The
omission of these variables could produce a spurious relationship be-
tween wife’s death and husband’s death. So it would be desirable to find
a way to reduce or eliminate such biases. Putting additional appropriate
variables into the model would be helpful, but such variables are not
always available.

3. THE CASE-CROSSOVER METHOD

In the absence of additional measured control variables, we consider
a fixed-effects approach in which each couple is compared with itself
at different points in time, thereby controlling for all time-invariant
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variables. One way of doing this is the case-crossover method, which
has been widely used in the epidemiological literature (Maclure 1991;
Marshall and Jackson 1993; Greenland 1996). According to the basic
form of the case-crossover design, we must choose a sample of individu-
als who have experienced events and record the values of their covariates
at the time of the event. We then choose some previous point in time
when the event did not occur (a “control” period), and record the values
of the covariates for the same individuals at that time. The data are ana-
lyzed by doing a matched-pair conditional logistic regression predicting
whether or not the event occurred. A critical issue is how to choose the
“control period” in order to minimize bias. More complicated forms of
the design involve drawing more than one control period for each event.
Although this can improve statistical efficiency, it is unclear how to do
this in an optimal fashion (Mittleman, Maclure, and Robins 1995).

For our mortality data, we extend the case-crossover design by
using information from all observed periods prior to the husband’s
death. Taking a discrete-time approach (Allison 1982), we treat each
day as a distinct unit of analysis. Suppose that a husband died on day
78. We then ask the question: Given that he died, why did he die on
this day and not on one of the preceding 77 days? Was there something
different about those days compared with the day on which he died? As
in the usual case-crossover design, we answer this question by way of
conditional logistic regression.

Let pit be the probability that the husband in couple i dies on day
t, given that he is still alive at the beginning of that day. Let Wit be an
indicator of wife’s vital status on day t. For example, we could let Wit
be 1 if the wife was dead on day t, otherwise 0. Alternatively, we could
let Wit be 1 if her death occurred within, say, 60 days prior to day t,
otherwise 0. We postulate the following logistic regression model

log
(

pit

1 − pit

)

= αi + γt + βWit (2)

whereγ t represents an unspecified dependence on time andα i represents
the effects of all unmeasured variables that are specific to each couple but
constant over time. Note that no time-invariant covariates are included
in the model as their effects are absorbed into the α i term.

We estimate the model by conditional maximum likelihood,
thereby eliminating the α is from the estimating equations. The mechan-
ics are as follows. For couples in which the husband died, a separate
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observation is created for each day that he is observed, from the origin
until the day of death. For each day, the dependent variable Yit is coded
0 if the husband remains alive on that day, and coded 1 if the husband
died on that day. Thus, a man who died on June 1, 1993, would con-
tribute 152 person-days; 151 of those would have a value of 0 on Yit,
while the last would have a value of 1. The wife’s vital status is coded 1
if she was dead on the given day, otherwise 0. For a different represen-
tation of wife’s vital status, the variable is coded 1 if her death occurred
within, say, 60 days prior to the given day, otherwise 0.

All couples in which the husband did not die are effectively
deleted from the sample. If the husband is alive on every day of observa-
tion, there is no within-couple variation on the dependent variable, and
hence no information is contributed to the likelihood function. After
deleting couples with no husband deaths, the likelihood function has
the following form:

L =
∏

i













exp(γT + βWi T)
T

∑

t=1

exp(γt + βWit)













(3)

In this equation, i runs over all couples whose husband died, and T
represents the final day of observation—that is, the day on which the
husband died. Notice that α i has been factored out of likelihood.

Most comprehensive statistical packages have routines to maxi-
mize this likelihood, usually under the name “conditional logistic regres-
sion.” The likelihood function is also identical in form to the stratified
partial likelihood for a Cox proportional hazards model. Hence, the
model may be estimated by any Cox regression program that allows for
stratification.

With a separate parameter for every day of observation, the
model in equation (2) is rather complex for estimation. We thus consider
only models which impose some restrictions on γ t. We begin by setting
γ t = 0—that is, no variation over time in the likelihood of a death.
Because the observation period covers only 17 months, this is not an
unreasonable assumption.

It so happens that couples who have no variation on the covariates
over time can also be deleted from the sample because they contribute
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TABLE 2
Cross-Classification of Husband Dead by Wife Dead, 39,942 Couple-Days

Wife Alive Wife Dead

Husband Dead 0 126
Husband Alive 19344 20472

nothing to the likelihood.2 In our case of a single dichotomous covariate
(wife’s death), we delete any couple whose wife did not die before the
husband. Of the 5769 couples in which the husband died, there were
only 126 cases in which the wife’s death preceded the husband’s in this
17-month interval. So our usable set of couples declines from 49,990
to 126, a rather drastic reduction by any standard. These 126 couples
contributed a total of 39,942 couple-days.

4. RESULTS FOR COUPLE MORTALITY DATA

We first attempted to estimate a conditional logistic regression model
in which Wit was coded 1 for wife dead on day t, otherwise 0. However,
this model did not converge. The reason is quasi-complete separation,
which can be seen in Table 2. If the husband is dead (on the final day
of the sequence), the wife is necessarily dead, yielding a 0 frequency
count in one cell of the contingency table. (Remember that conditional
likelihood necessarily restricts the sample to couples where the husband
dies and the wife dies before the husband.) This will also be true in every
couple-specific subtable. As is well known, the log-odds ratio for a 2 ×
2 table is not defined when there is a zero in the any of the cells.

In general, quasi-complete separation arises whenever the time-
varying covariate can only change monotonically with time. In our case,
the dummy variable for wife dead can change from 0 to 1 over time but
stays at 1 until the end of the series. The problem does not occur, however,
if we estimate a model in which the covariate is an indicator of whether
the wife died within, say, the previous 60 days. This covariate increases
from 0 to 1 when the wife dies, but then goes back to 0 after 60 days (if
the husband is still alive). Estimating the model with varying windows

2When γt = 0 and Wit constant for all t, the expression in parentheses in
equation (3) is identically equal to 1.
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TABLE 3
Odds Ratios for Predicting Husband’s Death from Wife’s Death Within Varying

Intervals of Time, Case-Crossover Method

Wife Died Within

15 Days 30 Days 60 Days 90 Days 120 Days

Odds-ratio 1.26 1.96 1.61 1.27 1.26
p-value .54 .006 .03 .24 .25

of time can give useful information about how the effect of wife’s death
starts, peaks, and stops.

Table 3 gives estimated odds ratios for several different intervals
of time, using conditional logistic regression. In all cases, the odds ratios
exceed 1.0 and are statistically significant for the 60-day interval and the
30-day interval. For the latter, the odds of husband’s death on a day in
which the wife died during the previous 30 days is about double the
odds if the wife did not die during that interval. It is worth keeping in
mind, however, that in this data set there were only 22 couples in which
the husband died within 30 days after the wife’s death.

A major limitation of these analyses is that they assume no de-
pendence on time itself, that is, γt = 0. Unfortunately, it has been shown
that case-crossover designs can be extremely sensitive to violations of
this assumption (Suissa 1995; Greenland 1996). For our example, if
there is any tendency for the incidence of wife death to increase over the
period of observation, this can produce a spurious relationship between
wife’s death (however coded) and husband’s death. Intuitively, the rea-
son is that husband’s death always occurs at the end of the sequence of
observations for each couple so any variable that tends to increase over
time will appear to increase the hazard of husband’s death.

Fortunately, there is little evidence for such a trend in these data.
Going back to the original data set of 49,990 couples, a Weibull model
for wife’s death shows that the hazard of a death actually declines slightly
with time. Similarly, in our sample of 39,942 person-days (from 126
couples) the correlation between wife’s death within 30 days and time
since the origin was −.04. So we seem to be in good shape for this
analysis.

But what if there were a correlation between time and wife’s
death? How could the model be adapted to adjust for time dependence?
A natural approach is to relax the assumption that γt = 0 and include
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some function of time in the model. Unfortunately, this strategy will
not generally work for this kind of data. If the covariates include any
monotonic function of time with coefficients to be estimated, the max-
imum likelihood estimates for those coefficients do not exist and the
model will not converge. Again, the problem is that any covariate that
may increase with time but never decrease (or that may decrease but
never increase) will be a “perfect” predictor of husband’s death because
a death always occurs at the last point in time.

It is possible, however, to include nonmonotonic functions of
time. For example, to allow for cyclic annual variation in the hazard of
husband’s death, we fit a conditional logistic regression model with three
covariates: wife death within 30 days, sin(2π t/365), and cos(2π t/365)
where t is the number of days since the origin. All three covariates were
highly significant, and the odds ratio for wife’s death remained at about
2.0.

While such a model provides useful information, it still does not
solve our problem of needing to control for monotonic functions of
time. As one possible solution, we estimated models with increasing
functions of time in which the coefficients of time were fixed rather than
estimated. These models converged, and the estimated hazard ratios
were similar to those in Table 3. Since the results could depend on the
fixed values of the coefficients, we performed a sensitivity analysis in
which the time coefficients were systematically varied over a range of
plausible values. Although the empirical application seemed to work
well, results of simulation studies (not shown) convinced us that this
approach is not valid. In particular, the coefficient for wife’s death was
badly biased unless the coefficients for time were ridiculously large, and
there was no apparent way to determine the correct values for the time
coefficients.

5. THE CASE-TIME-CONTROL METHOD

We now consider an alternative fixed-effects method that appears to
solve the problems that arise when the distribution of the covariate is
not in fact stable over time. Introduced by Suissa (1995), who called it the
“case-time-control” design, this approach uses the computational device
of reversing the dependent and independent variables in the estimation
of the conditional logistic regression model. This makes it possible to
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introduce a control for time, something that cannot be done with the
case-crossover method.

As is well known, when both the dependent and independent
variables are dichotomous, the odds-ratio is symmetric—reversing the
dependent and independent variables yields the same result, even when
there are other covariates in the model.3 In the case-time-control
method, the working dependent variable is the dichotomous covariate—
in our case whether or not the wife died during the preceding specified
number of days. Independent variables are the dummy variable for the
occurrence of the event (husband’s death) on a given day and some ap-
propriate representation of time—for example, a linear function. As in
the case-crossover method, a conditional logistic regression is estimated
with each couple treated as a separate stratum. Under this formulation,
there is no problem including time as a covariate because the working
dependent variable is not a monotonic function of time.

In Suissa’s formulation of the case-time-control method, it is es-
sential to include data from all individuals, both those who experienced
the event and those who did not (the censored cases). However, his model
was developed for data with only two points in time for each individual,
an event period and a control period. In that scenario, the covariate
effect and the time effect are perfectly confounded if the sample is re-
stricted to those who experienced events. On the other hand, censored
individuals provide information about the dependence of the covariate
on time, information that is not confounded with the occurrence of the
event.

By contrast, our data set (and presumably many others) has mul-
tiple “controls” at different points in time for each individual. That
eliminates the complete confounding of time with the occurrence of the
event (husband death), making it possible to apply the case-time-control
method to uncensored cases only. That is a real advantage in situations
where it is difficult or impossible to get information for those who did
not experience the event. The only restriction is that when the model is
estimated without the censored cases, we cannot estimate a model with
a completely unrestricted dependence on time—that is, with dummy
variables for every point in time.

3This symmetry is exact when the model is “saturated” in the control
covariates but only approximate for unsaturated models (Breslow and Powers 1978).
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Of course, if the censored cases are available (as in our data set),
it may be possible to get more precise estimates by including them. But
even if censored cases are available, there is a potential advantage to
limiting the analysis to those who experienced the event. Suissa’s version
of the case-time-control method has been criticized for assuming that
the dependence of the covariate on time is the same among those who
did and did not experience the event (Greenland 1996). This criticism
has no force if the data are limited to those with events.

For our mortality data, the working data set can be constructed
as before, with one record for each day of observation, from the origin
until the time of husband’s death or censoring. Unlike the case-crossover
analysis, we now include both censored cases (couples in which the hus-
band did not die) and uncensored cases. However, because conditional
logistic regression requires variation on the dependent variable for each
conditioning stratum, we can eliminate couples whose wife did not die
before the husband, with no loss of information. This restriction gives
us 1743 couples who contributed a total of 872,697 couple-days.

We estimated the following model. Let Hit be a dummy variable
for the death of husband i on day t, and let Pit be the probability that
wife’s death occurred within a specified number of days prior to day t.
Our working logistic regression model is

log
(

Pit

1 − Pit

)

= αi + β Hit + γ t. (4)

Again, we estimate the model by conditional logistic regression with
each couple as a stratum.4

Table 4 gives estimates for the 1743 couples in which the wife
died, and for the more restricted sample of 126 couples in which both
the husband died and the wife died before the husband. The estimates
and p-values for the two subsamples are very close and also quite similar

4We used SAS PROC LOGISTIC with the STRATA statement. Estima-
tion of the conditional logistic regression could also be done by way of a Cox
regression program, but that would be more complicated in the case-time-control
method than in the case-crossover method because a couple may have more than
one day on which wife had died within the preceding specified number of days.
Consequently, a conventional Cox partial likelihood is not appropriate. However, a
Cox regression program that can estimate a discrete model for tied data (available
in SAS or Stata) can produce the correct likelihood function.
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TABLE 4
Odds Ratios for Predicting Husband’s Death from Wife’s Death Within Varying

Intervals of Time, Case-Time-Control Method

Wife Died Within

15 Days 30 Days 60 Days 90 Days 120 Days

Wife died Odds-ratio 1.36 2.03 1.51 1.09 .97
(1743 couples)

p-value .41 .004 .05 .69 .88

Both died Odds-ratio 1.30 1.99 1.50 1.01 .80
(126 couples)

p-value .48 .005 .06 .95 .27

to those in Table 3 for the case-crossover method. Again, the evidence
suggests that the effects of wife’s death are limited in time, with consid-
erable fading after about two months. The standard errors (not shown)
are virtually identical for the sample of 1743 and the sample of 126, so
little was gained here by including the censored cases.

Although our working dependent variable is wife’s death, the
odds ratios should be interpreted as the effect of wife’s death on the
odds of husband’s death. That is because of the time ordering of
the observations—wife’s death always precedes husband’s death. If our
goal was to estimate the effect of husband’s death on wife’s mortal-
ity, we would have to construct a different data set that would sample
couple-days prior to the wife’s death, but not thereafter.

5. SIMULATION RESULTS

Although the case-time-control method seems like a promising ap-
proach for fixed-effects analysis, the method has seen only a few applica-
tions in the epidemiological literature and is still considered somewhat
experimental (Greenland 1996; Schneeweiss et al. 1997; Suissa 1998;
Greenland 1999; Donnan and Wang 2001; Hernandez-Diaz et al. 2003;
Schneider et al. 2005). To verify the appropriateness of this method for
the kind of data considered here, we undertook a simulation study that
investigated the performance of the estimators under several scenarios.
For each scenario, we constructed 100 samples, each with 500 “couples”
who were followed for a maximum of 20 “months.” At each month, the
husband could die or not die, with a probability determined by a logistic
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regression equation. Also at each month, a “treatment” variable could
take on a value of 1 or 0, again with probability determined by a logistic
regression equation.

Model 1. We first tested to see whether the case-time-control method
avoids the key flaw of the case-crossover method: a tendency to de-
tect nonexistent effects when the treatment is correlated with time. The
model used to generate the data had the form

Logit[Pr(Hit = 1)] = −4 + .10t + .50ui

Logit[Pr(Tit = 1)] = −1 + .10t + .50ui ,

where Hit is a dummy variable for husband’s death in couple i at time
t, Tit is a dummy variable for treatment for couple i at time t, and ui is
a random draw from a standard normal distribution that is specific to
couple i but which does not vary over time. Thus, the model does not
allow for an effect of treatment on death but does assume substantial
effects of time on both treatment and death (approximately a 10 percent
increase in the odds at each succeeding month). Furthermore, there
is substantial unmeasured heterogeneity (ui) that is common to both
death and treatment. Application of this model produced samples that
averaged 6868 couple-months and 323 husband deaths. The treatment
dummy was equal to 1 in 45 percent of the couple-months.

Table 5 shows the results for three different estimation methods.
For each method, the table gives the true parameter value (for the effect
of treatment on the log-odds of death), the mean of the 100 parame-
ter estimates, the mean of the 100 estimated standard errors, the stan-
dard deviation of the 100 parameter estimates (which, ideally, should
be the same as the mean of the standard errors), and the proportion of
nominal 95 percent confidence intervals that actually include the true
value (“coverage”). The case-time-control method performed about as
well as could be hoped for—the mean parameter estimate is close to
0, the two estimates of the standard error are identical, and 94 percent
of the nominal 95 percent confidence intervals contain the parameter
value.

By contrast, the case-crossover method did poorly. The average
coefficient estimate was .549 (corresponding to an odds ratio of 1.7)
and only 1 percent of the confidence intervals included the true value.
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TABLE 5
Estimates from Simulated Data Using Three Methods

Average Standard
Model Methoda Parameterb Estimatec SEd Deviatione Coveragef

1 CTC .00 −.025 .132 .132 .94
1 CC .00 .549 .126 .125 .01
1 LR .00 .192 .118 .116 .67
2 CTC .69 .721 .168 .168 .96
2 CC .69 1.311 .164 .160 .00
2 LR .69 .930 .151 .166 .48
3 CTC .69 .687 .166 .165 .96
3 CTC(-X) .69 1.018 .163 .166 .47
3 CC .69 1.253 .163 .159 .06
3 LR .69 .918 .150 .145 .49

aCTC = case-time-control, CC = case-crossover, LR = conventional logistic
regression, CTC(-X) = case-time-control without covariate X.

bTrue value of the coefficient in the model producing the data.
cMean of 100 parameter estimates.
dMean of 100 standard error estimates.
eStandard deviation of 100 parameter estimates.
fPercentage of nominal 95 percent confidence intervals that include the true value.

Conventional logistic regression did a little better but was still unsatis-
factory. The average coefficient estimate was .192, and only 67 percent
of the confidence intervals contained the true value.

In other variations of this model (not shown), we set the coef-
ficient for t to 0 in either the first or second equation. The case-time-
control method performed well in either variation. As expected, the
case-crossover method did well when there was no effect of time on
treatment, but not otherwise.

Model 2. The second model modified the equation for death to allow
for a nonzero effect of treatment. The equation for T was the same as
before. The equation for H was

Logit[Pr(Hit = 1)] = −3.5 + .10t + .69Tit + .50ui .

The coefficient of .69 corresponds to an odds ratio of 2.0. This model
produced samples that averaged 7987 couple-months and 217 husband
deaths.

Again, as seen in Table 5, the case-time-control method does well,
with a mean coefficient estimate of .721 (corresponding to an odds ratio
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of 2.06), with 96 percent of the confidence intervals containing the true
value. By contrast, the case-crossover method greatly overestimates the
coefficient, and not a single confidence interval contains the true value.
As before, conventional logistic regression gives intermediate results
with a 30 percent overestimate of the coefficient and nominal 95 percent
confidence intervals that contain the true value in only 48 percent of the
samples.

Model 3. To our knowledge, the case-time-control method has never
been considered as a method to control for other time-varying covari-
ates. Model 3 introduces a covariate that varies with time and affects
both treatment and death. The equations are

Logit[Pr(Hit = 1)] = −3 + .10t + .69Tit + .8Xit + .50ui

Logit[Pr(Tit = 1)] = −1 + .10t + .5Xit + .50ui .

Since X and T are correlated, we expect that omitting X from the es-
timated model will bias the estimated coefficient of T in the equation
for husband’s death. To control for X in the case-time-control method,
we shall include it as a covariate in the conditional logistic regression
predicting T . The model produced samples that averaged 7409 couple-
months and 279 husband deaths.

As shown in Table 5, the case-time-control method does just
as well here as with the previous scenarios. However, when the model
is estimated without the covariate X , the parameter estimate is much
too high (odds ratio of 2.77 rather than 2) and only 47 percent of the
confidence intervals contained the true value. Even with the inclusion of
X , the case-crossover method does poorly, with an odds ratio of 3.5 and
only 6 percent coverage. As before, conventional logistic regression (with
X included) produces estimates that are a bit too high and coverage of
only 49 percent.

6. DISCUSSION AND CONCLUSION

Fundamental problems can arise when attempting to apply fixed-effects
logistic regression to discrete-time event history data with nonrepeated
events (the case-crossover method). In particular, the conditional like-
lihood estimates will not converge if the model includes any covariate
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that is a monotonic function of time. This includes linear, polynomial,
or logarithmic functions of time itself, as well as any covariate, such as a
dummy for spouse alive or dead, that can only change in one direction
with time. Since time dependence cannot be controlled, the method can
also produce highly spurious estimates of the effects of any covariates
that happen to be correlated with time. Of course conventional Cox
models could still be estimated, but that would lose the advantage of
the fixed-effects approach.

The case-time-control method provides a solution to the inability
to control for time. This method also relies on conditional logistic regres-
sion, but reverses the role of the dichotomous event and a dichotomous
covariate. Simulations suggest that the case-time-control method pro-
duces approximately unbiased estimates of the odds ratio of interest,
even in cases where both the event hazard and the dichotomous co-
variate are strongly dependent on time. We have extended this method
in two ways. First, we argue that the inclusion of individuals who did
not experience events—previously thought to be an essential feature
of this method—is unnecessary if multiple control times are available
for those who do experience events and the dependence on time is not
left unrestricted. Second, our simulation results suggest that additional
time-varying covariates can be included as controls in the regression
model.

Application of both the case-crossover method and the case-time-
control method to mortality data of elderly couples provides evidence
that there is indeed an effect of wife’s death on husband’s odds of death,
even when all stable covariates are controlled, but that the effect is of
limited duration.

At this point, the case-time-control method is still restricted to
situations in which the aim is to estimate the effect of a dichotomous
covariate on an outcome event, while controlling for other covariates,
either dichotomous or continuous. In principle, one ought to be able to
estimate effects of multiple dichotomous covariates by estimating a sep-
arate model for each covariate as the “dependent” variable. It may also
be possible to handle polytomous covariates by estimating a conditional
multinomial logit model (although commercial software for estimating
such models is not widely available at present). At this point, however,
we are unable to use the case-time-control approach to estimate the ef-
fect of a continuous covariate. And there is little hope for estimating
the effects of covariates that are monotonic with time. Still, as we saw



FIXED-EFFECTS METHODS FOR NONREPEATED EVENTS 171

here, many such variables can be reformulated in ways that eliminate
the monotonicity.

The methods described here would be appropriate for events like
deaths or loss of virginity that are, in principle, not repeatable. They
may also be appropriate for events like arrests or promotions which,
although repeatable in principle, may be sufficiently rare that they are
observed no more than once for any individual in the sample. However,
in the case of rare but repeatable events, the case-time-control method
should be necessary only if observation ceases at the occurrence of the
first observed event. When observation continues and the covariates
continue to be measured after the occurrence of the event, we can use a
conventional conditional logistic regression predicting the event, with
a control for time or any other covariate that increases monotonically
with time. That is because, in that observational setting, the event does
not always occur at the end of the sequence of observations, and hence
there is no problem of quasi-complete separation.

REFERENCES

Allison, Paul D. 1982. “Discrete-Time Methods for the Analysis of Event Histories.”
Pp. 61–98 in Sociological Methodology, vol. 13, edited by Samuel Leinhardt. San
Francisco: Jossey-Bass.

———. 1996. “Fixed Effects Partial Likelihood for Repeated Events.” Sociological
Methods & Research 25:207–22.

———. 2005. Fixed Effects Regression Methods for Longitudinal Data Using SAS.
Cary, NC: SAS Institute.

Breslow, N., and W. Powers. 1978. “Are There Two Logistic Regressions for Retro-
spective Studies?” Biometrics 34:100–105.

Cameron, A. Colin, and Pravin K. Trivedi. 1998. Regression Analysis of Count Data.
Cambridge, England: Cambridge University Press.

Chamberlain, Gary A. 1980. “Analysis of Covariance with Qualitative Data.” Re-
view of Economic Studies 47:225–38.

———. 1985. “Heterogeneity, Omitted Variable Bias, and Duration Dependence.”
Pp. 3–38 in Longitudinal Analysis of Labor Market Data, edited by James J. Heck-
man and Burton Singer. Cambridge, England: Cambridge University Press.

Donnan, Peter T., and Jixian Wang. 2001. “The Case-Crossover and Case-Time-
Control Designs in Pharmacoepidemiology.” Pharmacoepidemiology and Drug
Safety 10:259–62.

Greene, William T. 1990. Econometric Analysis. New York: Macmillan.
Greenland, Sander. 1996. “Confounding and Exposure Trends in Case-Crossover

and Case-Time-Control Designs.” Epidemiology 7:231–39.



172 ALLISON AND CHRISTAKIS

———. 1999. “A Unified Approach to the Analysis of Case-Distribution (Case
Only) Studies.” Statistics in Medicine 18:1–15.

Halaby, Charles N. 2004. “Panel Models in Sociological Research: Theory into
Practice.” Annual Review of Sociology 30:507–44.

Hernandez-Diaz, Sonia, Miguel A. Hernan, Katie Meyer, Martha M. Werler, and
Allen A. Mitchell. 2003. “Case-Crossover and Case-Time-Control Designs in
Birth Defects Epidemiology.” American Journal of Epidemiology 158:385–91.

Iwashyna, T. J., J. Zhang, D. Lauderdale, and N. A. Christakis. 1998. “A Method-
ology for Identifying Married Couples in Medicare Data: Mortality, Morbidity,
and Health Care Use Among the Married Elderly.” Demography 35:413–19.

———. 2000. “Refinements of a Methodology for Detecting Married Couples in
the Medicare Data.” Demography 37(2):251–52.

Maclure, Malcolm. 1991. “The Case-Crossover Design: A Method for Studying
Transient Effects on the Risk of Acute Events.” American Journal of Epidemiol-
ogy 133:144–53.

Marshall, Roger J., and Rodney J. Jackson. 1993. “Analysis of Case-Crossover
Designs.” Statistics in Medicine 12:2333–41.

Mittleman, Murray A., Malcolm Maclure, and James M. Robins. 1995. “Control
Sampling Strategies for Case-Crossover Studies: An Assessment of Relative Ef-
ficiency.” American Journal of Epidemiology 142:91–98.

Schneeweiss, Sebastian, Til Sturmer, and Malcom Maclure. 1997. “Case-Crossover
and Case-Time-Control Designs as Alternatives in Pharmacoepidemiologic Re-
search.” Pharmacoepidemiology and Drug Safety 6 suppl. 3:S51–59.

Schneider, M. F., S. J. Gange, J. B. Margolick, R. Detels, J. S. Chmiel, C. Rinaldo, and
H. K. Armenian. 2005. “Application of Case-Crossover and Case-Time-Control
Study Designs in Analyses of Time-Varying Predictors of T-Cell Homeostasis
Failure.” Annals of Epidemiology 15:137–44.

Suissa, Samy. 1995. “The Case-Time-Control Design.” Epidemiology 6:248–53.
———. 1998. “The Case-Time-Control Design: Further Assumptions and Condi-

tions.” Epidemiology 9:441–45.
Yamaguchi, Kazuo. 1986. “Alternative Approaches to Unobserved Heterogeneity

in the Analysis of Repeatable Events.” Pp. 213–49 in Sociological Methodology,
vol. 16, edited by Nancy Brandon Tuma. Washington, DC: American Sociolog-
ical Association.

Zhang, J., T. J. Iwashyna, and N. A. Christakis. 1999. “The Performance of Differ-
ent Lookback Periods and Sources of Information for Charlson Comorbidity
Adjustment in Medicare Claims.” Medical Care 37:1128–39.


