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Cognitive representations of social networks 
in isolated villages
 

Eric Feltham    1,2, Laura Forastiere    1,3,4 & Nicholas A. Christakis    1,2,4 

People not only form social networks, they construct mental maps of them. 
We develop a sampling strategy to evaluate network cognition in 10,072 
adults across 82 Honduras villages and systematically map the underlying 
village networks. In 17 villages, we also discern the genetic relatedness of 
all 1,333 residents. Observers overestimate the social interactions among 
kin and are 33.38 percentage points (J) more accurate in judgements of ties 
between non-kin (95% con!dence interval: 31.27–35.49). Counterintuitively, 
observers had more accurate beliefs about non-kin pairs, especially when 
the observers were popular, middle-aged, or educated. Observers were less 
able to accurately judge ties across di"erent religions or wealth. Individuals 
in villages that cultivate co"ee, requiring coordinated e"ort, demonstrated 
greater bias to view networks as connected. Finally, more accurate 
respondents had better access to information that we experimentally 
introduced to their peers. Overall, people in#ate the number of connections 
in their networks and exhibit varying accuracy and bias, with implications 
for how people a"ect and are a"ected by the social world.

Social networks are crucial for social coordination1,2 and for the 
interpersonal diffusion of health-related2–4 and social, economic and 
political5–8 phenomena. Decades of research on social networks has 
focused on the social effects of patterns of social interaction. Sepa-
rately, research on social cognition has largely focused on how people 
represent other people and their attributes9–11. Much less work has 
examined how people think about social structure per se.

Yet, the ability to accurately ‘see’ one’s social network may facili-
tate individual and collective action. Humans possess a coalitional 
psychology12,13, and beliefs about the existence of relationships 
are probably a crucial mechanism by which people form alliances 
or infer the trustworthiness of others as information sources or as 
partners in joint action. Knowledge of social connections is also an 
important means by which individuals assign status to others14,15. 
Humans also exhibit an innate predilection to gossip about other 
people16,17, which has been shown to be important for bonding, trust and  
social cohesion17–19.

Scholars have tendered strong and contradictory theoretical 
accounts of individuals’ capacity for knowledge of social structure. 
Some social theorists have supposed that individuals have little to 

no knowledge of their broader social world20. At the other extreme, 
social learning models assume that people have complete network 
knowledge21,22; however, some have argued that individuals’ beliefs 
about geodesically distant connections play a role in social network 
dynamics23.

Existing work has examined social network cognition in the 
laboratory24–27 and in very small networks (usually less than 30 individu-
als) in circumscribed settings (such as classrooms)28,29. Other work has 
demonstrated that non-human primates have knowledge of third-party 
relationships30,31, and that young humans can infer the closeness of 
two people32. Work has also suggested that animals build ‘cognitive 
maps’33 that capture their spatial environment34 and that serve as a 
general mechanism to represent abstract cognitive space35–37, including 
social domains. In humans, such maps can be used for introductions, 
information disclosure and access to network resources.

Social networks are typically characterized using surveys, where 
each member of a defined population is asked about their personal rela-
tionships. For example, a villager is asked to list individuals in response 
to the question, ‘With whom do you spend free time?’ In the present 
work, however, we develop a procedure to assess individuals’ beliefs 
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accuracy in social network cognition is associated with their receipt of 
novel information.

Surveying social network beliefs
Using a sampling procedure (see Methods and Fig. 1), we presented 
each villager with up to 40 unique pairs of individuals (mean = 33.6, 
s.d. = 7.7) that represented either real ties in the reference sociocentric 
network or ties that did not exist (see Methods and Fig. 1). We collected 
the reference village-wide sociocentric data directly from the villagers 
approximately 3 weeks before administration of the network cognition 
survey. Specifically, we asked respondents to evaluate whether each 
pair of individuals: (1) spend free time together (‘free-time’); (2) discuss 
personal or private matter together (‘personal-private’); and (3) are 
immediate ‘kin’ (see Extended Data Table 1 for the full questionnaire). 
We compared respondents’ beliefs to the undirected sociocentric net-
work, where a relationship is said to exist between two individuals if at 
least one of them reports the existence of the relationship.

Importantly, ‘free-time’ and ‘personal-private’ differ in their vis-
ibility to external observers. An individual can judge whether a pair 
spends free time together on the basis of direct observation of pub-
lic behaviour, without reference to the intentions or dispositions of 
the occupants of the relationship. By contrast, an inference about 
a personal-private relationship between two people requires more 
substantial knowledge.

Villages ranged in size from 57 to 875 persons and in total contained 
45,614 existing ties. The pairs (whether real ties or not) assessed in the 
survey were evaluated by an average of 4.43 respondents (s.d. = 4.90), 
and individual pairs (comprising the ties queried) appeared 128.9 times 
on average (s.d. = 72.0) as a pair member (see Supplementary Results 
for more details).

Statistical models
We use multilevel logistic regression models to assess the determinants 
of accuracy in network cognition in our data, where survey respondents 
have repeated measures and are clustered into villages. Our binary 
outcome is whether a respondent k believes that a tie exists between 
a pair of individuals, i and j. We separately estimate the two dimen-
sions of accuracy: the true positive rate (TPR) and the false positive 
rate (FPR). FPR is equivalently represented as the true negative rate 
(TNR), TNR = 1 − FPR. We also estimate Youden’s J statistic47 to sum-
marize performance: J = TPR − FPR. J ranges from −1 to 1, where a value 
of 0 denotes chance performance (see Supplementary Fig. 2 and Sup-
plementary Methods).

We examine the individual rates along with the J statistic, since 
unidimensional measures of accuracy conflate sensitivity and specific-
ity. In Fig. 2, we delineate three distinct changes in accuracy that may 
be associated with changing levels of an attribute. Changes may be 
associated with a pure change in performance, where an individual is 
better able to identify ties overall, or instead be associated merely with 
a shift in the type of error committed. Most of the changes in accuracy 
we observe are changes both in performance and in trade-offs between 
errors. We report accuracy results in hundredths, where, for example, 
1.2 ‘points’ corresponds to a J statistic value of 0.012. For the TPR and 
FPR rate estimates, this reporting corresponds to percentage points.

We include a range of fixed effects in these models, including the 
relationship of the pair in the reference network as well as demographic 
and other attributes and network characteristics. We report adjusted 
predicted probabilities and contrasts, showing how the belief that a tie 
exists changes with the values of a characteristic while holding other 
covariates fixed at their population means or typical values in the 
population. For analyses of the relationship between the two accuracy 
rates, and between accuracy and knowledge of exogenously introduced 
information, we estimate second-stage models that regress on the 
individual accuracy scores. All reported statistical tests correspond 
to two-tailed tests (see Methods for a full description).

about others’ relationships in their broader network, asking individu-
als to evaluate whether ‘others’ are connected; for example, we ask 
person k ‘do i and j spend free time together?’ Previously, the approach 
has been to collect data on social network beliefs exhaustively, where 
each person in the network, k, is asked whether every distinct pair of 
individuals in the network is connected28,29,38. This approach has limited 
the study of network beliefs to very small groups. Here, however, we 
develop a sampling technique to collect beliefs about networks, and 
we deployed it in 10,072 adults in 82 villages in Copán, a rural region of 
Honduras. Conjointly, we collected complete village-wide sociocentric 
network data and comprehensive sociodemographic data from all  
the inhabitants.

In the simplest scenario, k has evidence of the relationship between 
i and j either through gossip or direct observation. However, when 
evidence is absent, the respondent faces a more challenging epistemic 
task and must determine whether the absence of evidence should be 
interpreted as evidence of absence. In general, there need not be any 
necessary connection between the types of error people make: people 
may be strictly better able to identify ties that either do or do not exist. 
However, given a mental model and set of evidence, a perceiver can 
trade false positives for false negatives by varying their threshold for 
classification. The ability of k to form such a judgement may depend 
on the visibility of the tie to k. For example, ties that are geodesically 
further away in a village network may be ones for which k is less able 
to acquire any evidence; consequently, higher overall accuracy may 
simply be associated with a comparatively lower commission of type 
I (false positive) errors.

Since a person’s own direct connections represent a small pro-
portion of the village network in which a person is embedded, activat-
ing their broader network to serve a purpose can often involve chains 
of multiple actors39,40. Hence, network knowledge may be important 
for access to social capital. Furthermore, the relationship between 
social attributes or arrangements (from education to religion, from 
geographic isolation to the kind of local farming), on the one hand, 
and accuracy in network cognition, on the other hand, are important 
to understanding how individuals differentially reason about and 
access the social capital that the relationships in their community 
represent.

For example, previous work has shown that efforts to acquire 
resources are often buoyed specifically by heterophilous interactions 
(between dissimilar individuals), which are more likely to provide 
non-redundant information and resources to an individual39,41. Despite 
their utility, heterophilous ties are harder to maintain42, generally 
attributed to structural (for example, shared social contexts make ties 
easier to maintain) and preferential (individual taste for homophily) 
factors; however, these explanations do not generally consider the 
‘visibility’ of diverse ties. Namely, individuals’ access to social capital 
might in principle be limited by the visibility of ties that cross social 
boundaries or connect socially dissimilar individuals.

Finally, here, we focus on kinship. Kinship has long been an object 
of inquiry43,44, and kinship classifications have been taken to be fun-
damental to social order and cohesion45 and determinative of social 
position. Some work has argued that knowledge of social relationships 
may be more important to social outcomes than mentalizing other 
individuals, especially in societies characterized by tight kinship 
structures46. We discover that while respondents are very accurate in 
determining the patterns of kinship in their networks, they wrongly 
use the existence of a kinship tie as a heuristic for other types of social 
interactions.

Overall, we find that a diverse set of demographic, village and net-
work factors is associated with accuracy. As a result, people generally 
form a distinctly mistaken impression of the social structure around 
them. Finally, we investigate whether people who conceive of networks 
more accurately are better able to acquire novel information that we 
experimentally introduced at random into the villages, and we find that 
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Overall accuracy by tie type and kinship status
Figure 3a presents the bivariate distributions of accuracy, stratified by 
both the type of relationship judged (free-time or personal-private) 
and whether the judged tie is between kin or not (as reported in the 
reference network by i and j) (see also Supplementary Fig. 3). Each 
point in this space represents an individual respondent, k, who may 
be thought of as a binary classifier.

When measured by unadjusted individual accuracy scores, individ-
uals perform above the level of chance in their relationship judgements 
(observe that the black dots are above and to the left of the diagonal 
indicating chance performance in Fig. 3a). Nonetheless, estimates for 
both types of relationship are close to the line of chance in practical 
terms when they occur between kin (observe that the magenta dots are 
near the diagonal line for the top two graphs in Fig. 3a) after adjustment 
for individual attributes of the observers (such as gender and age) and 
their network attributes (for example, the geodesic distance between 
a respondent and a pair they assess).

The chance-level performance in judgements of ties that 
are between kin is driven by a very high FPR for beliefs about 
personal-private (estimate = 91.42 percentage points, 95% CI: 90.8–
92.04, P < 0.001) and free-time (estimate = 91.61 percentage points, 
95% CI: 91.01–92.21, P < 0.001). In fact, both adjusted rate estimates 
are close to 1.0 in this case. Individuals appear to simply assume that 
individuals who are kin must be connected in these two other relation-
ship types (see also Extended Data Table 2). Moreover, we observe that 
the J statistic is near zero for kin judgements, which can be appreciated 
visually since the quantity J is indicated by the vertical distance of the 
points from the diagonal lines. Conversely, we find that individuals are 
33.38 points (J) more accurate in judgements of ties between non-kin 
compared with those between kin (95% CI: 35.49–31.27, P < 0.001) 

(bottom two graphs in Fig. 1a; see also Extended Data Table 2). Further-
more, we observe a substantial number of kin ties that correspond to 
neither free-time nor personal-private ties (Supplementary Table 1), 
indicating that kinship does not imply the existence of relationships 
in these village network in general.

Whether a tie is between kin is the single most important fac-
tor that affects social network cognition (as compared with all other 
effects considered in Extended Data Tables 2 and 3). We also find that 
individuals are very accurate in their knowledge of the kinship patterns 
themselves (Extended Data Table 4). Yet, this stands in sharp contrast 
to their ability to accurately determine whether kin are also connected 
in the other two network relationships we study. In other words, while 
people know who is related to whom in their villages, they are less aware 
whether others spend free time together or discuss personal matters, 
and incorrectly assume that kin necessarily have relationships in these 
other domains.

We collected genetic data in a subset of 17 villages (n = 2,293 
respondents) for the members of the cognized pairs (n = 1,333 people) 
and estimated the kinship coefficient between the pairs (see Methods 
for details). We observe a strong relationship between accuracy and 
(genetic) relatedness (Fig. 3b), validating the self-reported kinship 
result. Furthermore, respondents are most accurate in judgements of 
individuals who are somewhat unrelated, with a kinship coefficient of 
−0.063 and overall accuracy at 48 points (95% CI: 43.2–52.7, P < 0.001; 
TPR: 66.9 points, 95% CI: 62.7–71.0, P < 0.001; FPR: 18.9 points, 95% CI: 
16.0–21.8, P < 0.001). However, they approach chance performance 
both for judgements of very unrelated individuals or very close kin 
(Supplementary Table 2). These results are consistent with alternative 
specifications that use the specific kinship category (for example, sib-
ling) or distance in the kinship network (Extended Data Fig. 1).

a b c

Node type
Community member (’Alter’)

Survey respondent (’Cognizer’) Cognizer distance

1 2

3 4
>4

Tie exists in network
No

Yes

Response

Correct

Incorrect

(Not elicited)

Fig. 1 | Outline of the survey procedure. a, The network for a specific 
relationship (for example, free-time) in a representative village for an individual. 
Circles represent geodesic distances from 1 to 4 steps from the respondent in 
the underlying sociocentric network. b, Conceivable ties within 4 geodesic steps 
from the respondent. Solid lines represent existing ties, dotted lines represent 
non-existent ties. c, Survey queries and responses. We present up to 40 ties to 
each respondent, drawn from b. Of these, 20 are among individuals within 2 
degrees of the respondent, 10 are 3 degrees away, and 10 are 4 degrees away, 
measured in the network defined by the union of kin, personal-private and  

free-time networks. Individuals judge the existence of pairs that represent 
real ties (solid lines) or not (dashed lines) in the sociocentric network. Rings 
correspond to sampling bins. Individuals were queried about 33.6 pairs 
(median = 37.0, mode = 40.0) on average across free-time and personal-private 
relationships, and may be queried about fewer than 40 ties if they do not recognize  
individuals in the pair (see Methods). Since we sample on the union of networks, 
a wide range of geodesic distances between observers and elicited pairs is 
present in the data, with an average distance of 5.67 between a respondent and a 
displayed pair, and over 10% of elicited ties at 8 or more geodesic steps away.
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As expected, we find that personal-private relationships are con-
ceived of less accurately than free-time relations, in the full sample of 82 
villages. We see that J for the non-kin ties is 40.48 (95% CI: 38.45–42.42, 
P < 0.001) for free-time, which is 3.63 points lower than for judgements 
of personal-private ties (95% CI: −6.5 to −0.75, P = 0.013; TPR: −9.39, 95% 
CI: −11.4 to −7.38, P < 0.001; FPR: −5.77, 95% CI: −7.96 to −3.57, P < 0.001). 
Furthermore, the two rates move in opposite directions, where FPR 
and TPR are lower for judgements of personal-private compared with 
free-time ties (Extended Data Table 2).

Respondent characteristics are associated with 
accuracy
Attributes of individual respondents are associated with how accu-
rate they are. Here we specifically focus on individual judgements of 
non-kin ties, since there are no meaningful differences in accuracy when 
respondents assess ties between kin. Note that the effect estimates 
for kin are near the diagonal in the upper right of the graphs in Fig. 3c, 
such that the accuracy estimates are very similar in size regardless 
of the value of a studied attribute (see also Extended Data Fig. 2 for 
more details).

First, we do not find evidence of an effect of gender on overall 
accuracy (J). Women are non-significantly more accurate than men, 
at an increase of 2.42 points (95% CI: −0.72 to 5.56, P = 0.131) in terms 
of overall accuracy. However, we do find that men have a 3.2-point 
higher FPR than women (95% CI: 0.79–5.6, P = 0.009) (TPR: −0.78, 
95% CI: −2.97 to 1.42, P = 0.488) (Extended Data Fig. 2). Age exhibits a 

curvilinear relationship with accuracy, at its highest around middle age. 
From middle age, accuracy declines to chance performance in elderly 
participants (Fig. 3c). Most of the change is driven by an increase in 
the false positive rate. Over the age range, estimates of overall accu-
racy reach a maximum J statistic of 39.28 points (95% CI: 37.37–41.18, 
P < 0. 001; TPR: 67.07, 95% CI: 65.72–68.42, P < 0.001; FPR: 27.80, 95% 
CI: 26.37–29.23, P < 0.001) at age 31. While this is not significantly dif-
ferent from the estimates at the lowest ages, with a difference of 2.51 
points (95% CI: −1.02 to 6.04, P = 0.163; TPR: 5.26, 95% CI: 2.53–7.98, 
P < 0.001; FPR: 2.74, 95% CI: 0.31–5.18, P = 0.027), this is 37.45 points 
higher than the oldest participants (95% CI: 29.68–42.41, P < 0.001), who 
have scores below zero, indicating worse-than-chance performance 
overall (TPR: 1.4, 95% CI: −5.23 to 8.03, P = 0.679; FPR: −36.04, 95% CI: 
−42.41 to −29.68, P < 0.001).

Both wealthier and more educated individuals are significantly 
more accurate. The wealthiest individuals have a 6.94 point increase 
in J (95% CI: 2.22 to 11.6, P = 0.0.004; TPR: −13.32, 95% CI: −16.77 to −9.87, 
P < 0.001; FPR: −20.26, 95% CI: −23.76 to −16.76, P < 0.001) over villagers 
with the least wealth. In addition, they are also more conservative in 
their judgements, with a greater bias to assume that their networks are 
sparse compared with those lower in wealth or education (Fig. 3c). The 
results for education are presented in Extended Data Fig. 2 and Table 3. 
Finally, individuals with higher network degree exhibit a clear increase 
in performance on all three accuracy measures, with an increase in J 
of 8.3 points for those with just one tie up to those with 18 ties (95% CI: 
3.47–13.12, P < 0.001) (TPR: 5.55, 95% CI: 1.63–9.46, P = 0.005; FPR: −2.75, 
95% CI: −5.75 to 0.25, P = 0.073; Fig. 3c) (see Extended Data Table 3 for 
detailed results on the contrasts).

Tie characteristics are associated with observer 
accuracy
Accuracy is related to properties of the ties judged by the respondents 
(Fig. 4, and Extended Data Figs. 3 and 4). Here we again examine differ-
ences in judgements of non-kin ties. As respondents are asked about 
pairs of individuals who are further away in the underlying sociocentric 
network, we observe a strong decrease in overall accuracy. J declines 
by 21.6 points (95% CI: 17.61–25.59, P < 0.001; TPR: −36.82, 95% CI: −40.4 
to −33.25, P < 0.001; FPR: −15.22, 95% CI: −17.27 to −13.17, P < 0.001) 
from judgements about directly connected individuals (that is, about 
whether two alters connected to an ego are in turn connected to each 
other) to those furthest away (Fig. 4b).

We also find that accuracy in respondents’ judgements changes 
with the number of geodesic steps that separate two target individu-
als in the network, when they are not connected. The observer judged 
more accurately as the geodesic distance increases by over an order of 
magnitude (from 2 to over 15 degrees of separation); pairs are less likely 
to be seen as connected when they are further apart. This amounts to 
an FPR change of −34.55 points (95% CI: −36.33 to −32.77, P < 0.001) 
(Fig. 4b). Hence, individuals are responsive to the social distance 
between individuals.

Furthermore, we see a decrease in overall accuracy regarding ties 
connecting people with high average degree (of i and j), with a change of 
−7.1 points (95% CI: −11.14 to −3.07, P = 0.001; TPR: −16.1, 95% CI: −18.38 
to −13.82, P < 0.001; FPR: −23.2, 95% CI: −26.76 to −19.65, P < 0.001) in 
Fig. 4a. Here we observe a substantial trade-off in the error type that 
a respondent makes when the average degree of the pair changes. 
We also observe a significant interaction between the degree of the 
respondent and the average degree of the pair (TPR: b = 3.325, P < 0.001, 
FPR: b = 3.397, P < 0.001). This means that high-degree individuals 
are the most accurate in judgements of low-degree pairs, but their 
performance declines more rapidly than low-degree respondents for 
judgements of high-degree pairs (Supplementary Fig. 4).

Separately, as the average age of a pair increases, we find a decrease 
in accuracy. This is driven solely by a drop in TPR. Here, overall accu-
racy (J) changes by −24.34 points (95% CI: −27.67 to −21.01, P < 0.001;  
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along this line, the value of an attribute is associated with a more liberal or more 
conservative tendency to render judgements of the existence of a tie. In the third 
(‘Impure change’), we see a change in both bias and in overall performance.
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TPR: −26.71, 95% CI: −29.26 to −24.16, P < 0.001; FPR: −2.37, 95% CI: −4.69 
to −0.06, P = 0.045) over the range of values (Extended Data Fig. 3c). 
By contrast, when there is a greater difference in age between those in 
a judged pair, ties are substantially more salient, with an increase in 
accuracy of 22.01 points (95% CI: 19.0–25.01, P < 0.001; TPR: 24.78, 95% 
CI: 22.8–26.76, P < 0.001; FPR: 2.77, 95% CI: 0.41–5.13, P = 0.021) over the 
range of values in the population (Extended Data Fig. 3d).

We observe significant differences for each gender combina-
tion of the ties, with mixed ties identified at an overall accuracy (J) 
of 17.37 points higher than those between men (95% CI: 14.33–20.41, 

P < 0.001; TPR: 3.27, 95% CI: 1.05–5.49, P = 0.004; FPR: −14.1, 95% CI: 
−16.33 to −11.86, P < 0.001) and at 7.76 points higher than those between 
women (95% CI: 4.86–10.65, P < 0.001; TPR: −2.93, 95% CI: −5.01 to 
−0.86, P = 0.006; FPR: −10.69, 95% CI: −12.85 to −8.53, P < 0.001). Like-
wise, ties between women are also more accurately conceived than 
those between men, at a difference of 9.61 points (95% CI: 6.52–12.7, 
P < 0.001; TPR: 6.21, 95% CI: 4.14–8.27, P < 0.001; FPR: −3.41, 95% CI: 
−5.86 to −0.96, P = 0.006).

Next, we consider important characteristics related to social 
identity: religion, indigeneity (whether respondents identify as being 
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Fig. 3 | Accuracy of social network beliefs. a, Distributions of respondent 
accuracy. The green dotted-line segment above the black dotted line represents 
better-than-chance performance, and the orange section below the dotted line 
represents worse-than-chance performance. Top: distributions of assessments 
for kin ties. Bottom: assessments for non-kin ties. Participant-level accuracy 
rates are stratified by actual kinship status and relationship type. Black dots 
indicate overall unadjusted average participant-level accuracy; magenta dots 
show model-adjusted means. Unadjusted estimates restrict to respondents 
evaluating at least 3 true and 3 false ties (n = 9,305). Adjusted estimates account 
for demographic controls, network degree, kinship status, relationship type, 
network distance and random effects for village and respondent. Density values 

reflect interpolated counts of respondent-level true and false positive rates. 
b, Marginal effect of genetic relatedness on network cognition accuracy. In 17 
villages (n = 2,248 respondents), we estimated kinship coefficients between 
cognized pairs (1,333 individuals). Kinship coefficient values <0 indicate 
unrelated individuals and 1/2 indicates monozygotic twins. Left: grey bands 
represent bootstrapped 95% confidence ellipses around the mean estimates. 
Right: bands represent 95% confidence intervals around the mean estimates.  
c, Marginal effects of observer characteristics on accuracy. Effects of age, wealth 
and network degree (count of first-degree neighbours for personal-private or 
free-time relationships) are shown. Grey shading represents 95% bootstrapped 
confidence ellipse around the mean estimates.
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of Mayan descent) and wealth. We do not find a significant relation-
ship between the indigenous composition of a tie and how well it is 
conceived (Extended Data Fig. 4b). We find that while individuals 
answer correctly at similar overall rates for mixed-religion pairs as 
for same-religion pairs (Fig. 4a and Extended Data Fig. 4a), there is a 
substantially different error pattern: same-religion pairs are associ-
ated with a TPR rate that is 6.06 percentage points higher than for 
mixed-religion pairs (95% CI: 3.94–8.17, P < 0.001), and the FPR changes 
by an even larger 7.24 percentage points (95% CI: 5.11–9.38, P < 0.001) (J: 
−1.19, 95% CI: −4.08 to 1.71, P = 0.423). In short, individuals are less able 
to identify connections between individuals of different religions and 
more likely to falsely assume that ties exist between co-religionists.

Furthermore, we find relatively large and significant effects related 
to the wealth of the cognized pair. Observers judge ties between indi-
viduals of similar wealth more accurately. In Fig. 4a (Extended Data 

Fig. 4c), when we compare assessments of those closest in wealth to 
those with the greatest absolute difference in wealth, we find that J 
declines by 14.49 points (95% CI: 11.02–17.96, P < 0.001; TPR: 33.47, 95% 
CI: 30.46–26.47, P < 0.001; FPR: −18.98, 95% CI: 16.99–20.96, P < 0.001). 
In Fig. 4a (Extended Data Fig. 4d), we observe that wealthier pairs 
(those with a high average wealth level of the individual pair mem-
bers) are distinguished with significantly higher overall accuracy, a 
difference of 7.92 points (95% CI: 4.45–11.39, P < 0.001; TPR: 25.57, 95% 
CI: 22.94–28.2, P < 0.001; FPR: 17.65, 95% CI: 15.23–20.07, P < 0.001). 
In addition, changes in average wealth also constitute a significant 
trade-off in error type; villagers tend to blindly assume that wealthier 
pairs are more likely to be connected, exhibiting both high TPR and 
FPR (see Extended Data Table 2 for all estimates).

Moreover, we examined the interaction between the wealth of the 
respondent (k) and the pair (of i and j) with respect to accuracy. We find 
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Fig. 4 | Tie determinants of respondent accuracy. a, We find that a range of 
properties of ties have statistically significant associations with their tendency 
to be accurately identified. In each panel, the marginal effect on accuracy in ROC 
space is shown. Grey shading represents the 95% bootstrapped confidence ellipse 
of the predictions from the two models. Estimates are stratified by whether they 
are of a tie among kin or not. Dotted line TPR = FPR indicates the line of chance, 
and the dotted green and red line TPR = 1− FPR indicates changes in performance. 
b, Network distances. Left: respondent-to-tie geodesic distance. Individuals 
may or may not have a defined path between them in the reference network; 
when there is a path, individuals exist at a geodesic distance defined as the 
minimum number of steps between them; note that individuals who do not have 

a path between them necessarily have a path in at least one of other networks 
considered in this study, by design. Right: within-tie distance. When a direct tie 
does not exist between two individuals, they are separated by a specific geodesic 
distance (or they may have no path between them in the network). The scatter 
points to the left of the dashed linerefer to estimates where there is no geodesic 
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(see Methods for details). c, Interaction between the average wealth of a pair and 
the respondent’s wealth on the summary measure, J (see Methods for details).
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evidence that the relationship between accuracy and the wealth of a 
cognized pair changes substantially with the wealth of the respondent. 
The interaction is statistically significant for both the TPR (b = 3.515, 
P < 0.001) and FPR (b = 3.959, P < 0.001) (Extended Data Fig. 4e and Sup-
plementary Table 3). For both underlying accuracy rates, we see that 
poorer individuals are more accurate in rendering judgements of ties 
between other individuals who are poor, compared with wealthier indi-
viduals. This pattern diminishes and then flips for pairs with relatively 
high wealth. When we consider overall accuracy (J), as shown in Fig. 4c, 
we see that accuracy increases linearly with the wealth of the pair for 
judgements by individuals who are low in wealth (see Supplementary 
Fig. 5 for additional results).

In sum, while both poor and wealthy individuals have low accuracy 
when queried about the ties between poor individuals, the accuracy of 
the wealthy respondents increases at a faster rate and is more accurate, 
for other wealthy pairs. Individuals who are less well-off are less able 
to judge ties among the wealthier members of their village networks 
than the (relatively) wealthy themselves, even after adjusting for social 
network distance, demographic characteristics and kinship. Strikingly, 
poorer individuals are also less able to judge relationships among other 
poor individuals.

Village-level network accuracy
We find relatively little variation across the 82 villages in the accuracy 
of their residents (Fig. 5a). We assessed whether village size, geographic 
isolation, or agricultural focus were associated with the accuracy of 
social network cognition of their inhabitants after adjusting for the 
characteristics of the respondents. Neither village size nor isolation 
were associated with villager accuracy (see Supplementary Results). 
Furthermore, given that we adjust for the geodesic distance between 
the observer and the pair, we specifically note that we fail to find an 
effect of village size independent of this distance (although we do find 
an effect of village size in a simplified model, in Supplementary Fig. 6). 
However, villages engaged in coffee cultivation had more accurate vil-
lagers (Fig. 5b and Supplementary Fig. 7) with a difference in the TPR 
of 5.07 points (95% CI: 2.09–8.06, P = 0.001). Most generally, villagers 
exaggerate the connectivity of their network, when aggregating over 
all respondents, although the general shape appears visually similar 
to the reference network (as illustrated in Fig. 5c,d).

Relationship between the accuracy rates
Next, we consider the relationship between the two underlying meas-
ures of accuracy within respondents. We estimate respondent-level 
accuracy scores and regress TPR on FPR, with second-stage adjustment 
for the age, gender and the network degree of the respondent (see 
Supplementary Methods for details).

There is a clear concave relationship, where more sensitive indi-
viduals are less specific in their judgements about network structure 
(Fig. 6a and Supplementary Table 4). Generally, we see that the distri-
bution of accuracy scores is defined by individuals’ tendency to trade 
errors rather than perform better or worse. However, we do find that 
more accurate individuals have a greater relative ability to detect 
true negatives, with a sparser view of their network. Specifically, the 
most accurate have the lowest false positive rates (J = 42.73 points, 95% 
CI = 41.91–43.55, P < 0.001), while the least accurate have the highest 
false positive rates (J = 8.82 points, 95% CI = 6.42–11.22, P < 0.001). 
While we observe a TPR change of 29.09 percentage points (95% CI: 
26.56–31.6, P < 0.001) over the observed range of respondent-level false 
positive rates, the simultaneous change in the FPR is over twice as large.

Network accuracy and acquisition of exogenous 
information
Our investigation was conducted amid a randomized controlled trial to 
discern optimal methods for the delivery of public health interventions 
to individuals48. In 44 (out of 82) villages, we targeted randomly chosen 

individuals for information sessions focused on health behaviours 
(delivered monthly for 22 months) where participants were taught 
previously unknown riddles related to health outcomes. Knowledge of 
the riddles was assessed at the conclusion of the intervention, roughly 
a year before the collection of network beliefs (Supplementary Table 5). 
The percentage of villagers targeted in each village was randomized, 
by design, over the range from 0% to 100%. Here we examine riddle 
knowledge among those (n = 2,700 respondents) ‘not’ targeted for 
the intervention, who would have learned the riddles through social 
learning. The three riddles summarized the use of zinc as an effec-
tive treatment for diarrhoea, the use of a prenatal vitamin, and proper 
umbilical cord care for newborns.

Overall, we find that knowledge of the riddles is positively asso-
ciated with network accuracy (J). The most accurate individuals are 
27.70 percentage points more likely to also learn the riddles (95% CI: 
17.50–38.00, P < 0.001), although those who are less able to identify 
true positives are less likely to know the riddles. These effects represent 
a residual association, obtained after adjusting for demographic and 
network characteristics (Fig. 6b, and Supplementary Tables 6 and 7).

Performance, bias and trade-offs across attributes
Finally, we examine accuracy performance and error type bias across 
characteristics (Fig. 7). We transform the coordinates, TPR and FPR, so 
that they represent the performance (J) and bias (illustrated in Fig. 7a). 
We measure positive predictive bias (PPB) as the extent to which a classi-
fier has a greater ability to detect true positives over true negatives and 
errs toward stating the existence of ties regardless of their status (see 
Supplementary Methods). PPB ranges from 0 to 2, where an individual 
assumes that no ties exist at 0, assumes that every pair is a tie at 2, and is 
unbiased at PPB = 1. We observe that the most accurate individuals are 
those with a higher TNR than TPR, such that individuals with highest 
TNR are 4.61 points more accurate (95% CI = 3.76–5.45, P < 0.001) than 
those without bias, at JPPB = 1 (Fig. 6a). In Fig. 7b on the left, we display 
the maximum absolute amount of change in performance and bias, 
and on the right, we display the ratio.

Ratios above 1 indicate greater change in performance than a 
trade-off. Here, the network degree of a survey respondent is the char-
acteristic most clearly associated with a pure performance, although 
other attributes (for example, age) do represent a larger performance 
change over their full observed range of values in the population. By 
contrast, wealthier people are primarily more conservative in their 
judgements of ties in their network, with a comparatively more modest 
increase in overall accuracy: they are less likely to falsely see ties that 
do not exist, but at partial expense to their ability to ascertain real ties. 
Most attributes have a ratio below one, implying a greater tendency 
to trade errors.

Robustness checks
We repeated our main analyses using two alternative measures of the 
reference (underlying) sociocentric network. First, we allowed a tie to 
be considered true if reported in any one of the three previous waves 
of data collection (and false otherwise) reaching back roughly 5 years. 
Separately, we required that a tie be nominated in both of the two most 
recent waves of data collection (the current round and two years previ-
ously). These analyses revealed only modest changes in our findings. 
In addition, we duplicated our main analysis on a restricted subset of 
the data, where survey respondents were within 3 geodesic steps of 
the pairs they judge, in line with smaller network cognition datasets49. 
Here, we found results consistent with the results in the larger network 
(see Supplementary Results).

Discussion
We find that people have systematic, discernible biases in how they 
perceive social relationships among others in their communities. This 
bias is socially patterned. First, people systematically overstate the role 
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of kinship in social structure by assuming kin interact more than they 
do. That kinship is systematically misread as a guide to other domains 
of social life is notable given that so much work emphasizes its role in 
social classification and collective action43–45. Further, overestimat-
ing kinship’s influence may negatively impact trust and cooperation, 
particularly with out-groups46,50–52, and may limit individuals’ ability to 
form links beyond family ties that are important for collective efficacy 
and social learning53.

Nonetheless, that individuals have accurate knowledge of the 
kinship patterns themselves accords with the importance of family 
structures in settings where they often act as substitutes for markets or 
other institutions (for example, by securing property rights and guid-
ing exchange)54,55. Kin ties are often highlighted at community events 
(for example, at weddings) and are likely to be topics of conversation 
(for example, who got married) in ways that informal ties are not. 
While it may appear surprising that a tie in the kinship network ‘does 
not’ necessarily imply that two individuals discuss personal or private 
matters, people do not always activate kin ties for personal advice56,57, 
and even small-scale societies are characterized by large numbers of 
non-kin ties58–62. More broadly, this tendency to conflate distinct types 

of ties (for example, kin connections and free-time relationships) may 
represent a more general pattern whereby observers (wrongly) infer 
that ties overlap. Perhaps, individuals may presuppose multiplexity in 
relationships in an attempt represent complex patterns more simply26.

Individuals also misconceive relations among non-kin. We find 
that a variety of key demographic characteristics predict accuracy 
in network knowledge. Furthermore, many characteristics indicate a 
change in error type bias rather than genuine changes in performance. 
Notably, degree, a social network property of an individual, is most 
clearly associated with a strict increase in performance.

Consistent with limited work on network accuracy63, we find that it 
is crucial to disaggregate the dimensions of accuracy, rather than rely-
ing only on a summary measure (J), given the different social meanings 
of the error rates: failing to see a tie that exists may have a very different 
implication than falsely seeing one that does not. Relatedly, differ-
ent individuals may have identical representations of a relationship 
but apply different classification thresholds and thus judge ties very 
differently, potentially due to considerations of practical interest64, 
where tendency to assert a tie may hang on the stakes for an individual. 
Benefits may even accrue to false beliefs in ties: individuals who act as 
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predictions across the whole free-time network (d) for a single village. Here 
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a network that is much denser (by a factor of 8), adding a total of 748 ties to the 
108 that exist in the sociocentric network. See Supplementary Information for 
further village-level analyses.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02221-6

if friendship ties exist may inadvertently forge new ties. Investigating 
the broader social consequences of network knowledge is an important 
direction for future work.

Strongly connected communities are better able to solve coor-
dination problems65,66, while networks fragmented along sectarian 
or ethnic lines are often less effective and often have lower levels of 
economic development67,68. Intergroup contact is important for social 
cohesion69 and has been linked to effective community governance70. 
Evangelical Protestantism has emerged as an important and conten-
tious identity marker in Latin America71. We find that individuals tend 
to assume that more ties exist between those of the same religion and 
are less able to identify ties across religious lines. Similarly, individuals 
are less able to identify ties that exist across different socioeconomic 
levels. While some of these findings accord with the tendency toward 
homophily in social networks42,72, individuals’ errors may overempha-
size this phenomenon. For age and gender, dissimilar ties are judged 
with greater accuracy, and individuals expect connections between 
pairs with differing network degrees. Future work may consider the 
specific conditions and extent to which individuals rely on homophily 
as a heuristic to judge their networks. These biases may impede the 
activation of existing resources for social action. Consequently, our 
findings suggest that, in addition to structural interventions facilitat-
ing new connections across identity lines69,73, it may be important to 
focus on strategies that make salient the overlooked intergroup ties 
that already exist in communities.

In the randomized controlled trial of introduced information, we 
found that individuals with a higher TNR are more likely to absorb novel 
‘non-social’ information transmitted through social channels. This fits 
with the general pattern that accurate individuals seem to possess a less 
‘oversocialized’ view of their social environment; one that less strongly 
inflates network density and highlights the actual paths of influence.

While social capital is conventionally held to inhere in the social 
environment, external to individuals network beliefs are probably 
crucial to social capital in groups5,40,74,75; solutions to collective action 
problems may be inhibited when individuals fail to properly see and 

activate the social ties around them. Similarly, coffee cultivation in 
Honduras is labour intensive, relying on seasonal community labour 
for the months-long annual harvest. The practice of mobilizing social 
ties to coordinate production, in combination with sustained interper-
sonal contact during the harvest, may foster this tendency of villagers 
to inflate the number of connections in their network, thereby seeing 
their communities as more cohesive. This further aligns with research 
showing that labour-intensive crop farmers exhibit less individualistic 
orientations and greater abilities in relationship building76,77.

Work on network search has generally assumed that individuals 
only have knowledge of their own connections in reaching out to indi-
rect connections78,79. But partial network knowledge may impact this 
process. Connections to individuals high in socioeconomic status is a 
key element of economic mobility80, and we find that the visibility of 
ties among poor individuals is lower than for those of the better-off 
villagers. Similarly, the observed lack of awareness of ties among the 
less wealthy by individuals who are also poor may constrain the ability 
for social coordination among the poor81.

The manifold functions of network cognition may be especially 
important in settings where formal institutions are absent or weak, such 
as the developing world, and where individuals’ ability to access social 
capital depends on informal networks45,82, and their broader network 
knowledge. Still, while we focus on villages in Honduras, social net-
works exhibit a common ‘small-world’ topology across societies61,83,84 
with short path lengths and high clustering coefficients85,86. Nonethe-
less, whether network beliefs manifest context-dependent patterns 
around the world is a subject for future work. Our analysis has focused 
on beliefs about social networks from the bottom up: we ask individuals 
about the existence of dyads rather than their impressions of entire 
networks, and we expect that individuals learn about networks through 
their experience of social relationships.

In sum, how individuals think about the relationships around them 
may substantially shape the way behaviours and ideas flow through 
networks—often in ways that cannot be captured by the network struc-
ture alone.
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exogenous information. a, We find that the individual-level accuracy rates (TPR 
and FPR) are strongly related, such that increases in a tendency to identify true 
positives is associated with an increase in the tendency to identify false positives. 
The orange line represents the adjusted predictions at the mean for the 
individual accuracy rates, estimated from an OLS regression of an individual’s 
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(free-time and personal-private). The points represent the predicted accuracy 
rates for each respondent, marginalized over relationship, and are coloured by 
performance (J). The estimates concern observations among non-kin. 

Bootstrapped 95% confidence intervals are shown (orange band). In addition, J is 
represented graphically at its extrema ( J
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, J
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) and the point at which 
individuals are unbiased (PPB = 1). b, Network accuracy is associated with 
acquisition of novel non-social information. Estimation is performed with a 
logistic model of knowledge of three exogenously introduced riddles on 
predicted respondent-level social network accuracy. Models adjust for the 
specific riddle, demographic characteristics (age, gender, education) and 
network degree. Bands represent bootstrapped 95% confidence intervals  
around the mean (see Supplementary Fig. 8; see Supplementary Tables 7 and 8 
for details).
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Methods
The Yale IRB (Protocol #2000036654) and the Honduran Ministry of 
Health approved all data collection procedures, and all participants 
provided informed consent.

Local involvement
We worked closely with the local population of Copán, Honduras, 
sought feedback and approval from officials at the Ministry of Health 
(MOH) of Honduras, and endeavoured to provide practical benefits 
to the local community. Here we briefly summarize this history and 
outline some of our principles and actions in this regard.

When we began designing the underlying cohort project in 2013, 
the Gates Foundation introduced us to the Inter-American Develop-
ment Bank (IDB), which has been supporting and doing work through-
out Latin America, and IDB in turn introduced us to the Honduras MOH. 
Because of this pathway to getting the project launched, we worked 
with local and regional public health organizations and with local 
leaders rather than with local academic institutions.

From the outset when the original cohort was impanelled (for a 
randomized controlled trial initiated in 2013)48, we sought extensive 
local involvement, beginning with a needs assessment where local 
village residents told us about topics of concern to them in a series of 
meetings in villages throughout Copán. In addition to extensive com-
munity input, we sought input from the MOH.

Copán is a very isolated area. Over the years, as we built our 
data collection team in Copán, we developed deep ties to the local 

community, to local village leaders, to the few local health clinics, and 
to local transportation and infrastructure providers. Because of these 
ties and our commitment to the local community, we periodically pre-
sented our results directly to these constituencies at proper intervals.

We furthermore provided specific material benefits to the local 
community. For instance, when people were tested for parasites as 
part of our study, we furnished test results and arranged their treat-
ment. When people had their vision tested, we provided corrective 
glasses. We also solicited ideas from the local community about what 
infrastructure improvements we could make, and we repaired many 
local playgrounds and clinics as a result (a detailed summary is available 
upon request). In addition, we built capacity for development goals in 
the region: we hired and trained over 100 local people, and many of our 
former data collectors have gone on to work for other public health 
and development entities.

This work is not likely to result in stigmatization, incrimination, or 
discrimination for the participants, and we have carefully safeguarded 
all data from threats to the privacy or security of our participants, which 
has constrained the individual-level data we can release.

Survey design
We obtained individuals’ beliefs about the existence of ties between 
others in their social network for three distinct relationship types. 
In other words, we asked individuals to judge whether pairs of 
individuals who live in their villages are connected in each of three 
ways: whether they are immediate kin, whether they spend free time 
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Fig. 7 | Bias in error commission. a, To further summarize the change in  
accuracy, we change the basis of the ROC space. The transformed axes (right) 
represent performance (J) and bias (positive predictive bias). After this 
operation, we decompose the vector formed by the maximum change in  
each dimension (light-blue and orange lines). See Supplementary Methods for 
details. b, Performance:trade-off ratio (right) and maximum change (left).  

The maximum change over the range of each studied attribute, whether an 
attribute of a survey respondent, or of a tie, is shown, as either the change in the 
J statistic, or in the positive predictive bias (left) and the ratio of the two (right). 
In the case of attributes of ties, an attribute may be either the mean values of the 
pair (mean), the absolute difference between the two (difference), or the unique 
combinations of qualitative values (combination).
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together, and whether they discuss personal or private matters 
together. For example, we asked survey respondent, José, ‘do María 
and Eduardo spend free time together?’ The survey is presented in 
Extended Data Table 1.

We collectively represent each villager’s beliefs about their social 
network as a three-dimensional N × N × N array Y, where each element 
Ykij represents person k’s belief about the relationship between two 
individuals, i and j. We may think of Y as a series of N matrices, where 
each N × N ‘slice’ Yij represents a single individual’s estimation of the 
underlying sociocentric network in the village they inhabit. Note that 
Y is the collection of beliefs for all individuals about a network defined 
by a particular relationship. We collected network beliefs separately for 
each of three relationships in 82 villages in rural Honduras.

Since it is infeasible to collect each person’s beliefs about their 
whole network, we developed a sampling strategy that leverages our 
knowledge of the underlying sociocentric social networks to make 
the collection of data on relationship conceptions possible in such 
large-scale networks. Under this sampling design, we showed up to 
40 distinct pairs of individuals to each survey respondent to sample 
beliefs from Y for each of the three relationships.

In contrast to our approach, existing work on social network cog-
nition has almost exclusively relied on a complete survey in which 
researchers obtain a response from each individual in a social network 
about every possible tie in that network (Supplementary Fig. 10). As a 
result, data collection has only been performed in small networks, since 
surveying all ties in a network of even moderate size would require ask-
ing individuals thousands of questions. While there have been various 
approaches to this problem87–89, previous attempts to model cognitive 
social structures data has generally not focused on the development 
of strategies to sample it90–92.

For methodological simplicity and given findings on social cog-
nition, we asked only about symmetrized relations. While social rela-
tionships are not always reciprocated93–96 and reciprocation itself 
is socially patterned97, there is some evidence that individuals are 
not able to accurately track the directionality of ties among others in 
their group24,89. For example, Smith may know that Jones and Brown 
are friends but is unlikely to know whether Jones considers Brown his 
friend, Brown considers Jones her friend, or both.

The broader research effort in Honduras has involved the collec-
tion of a broad set of ties, including a range of kin and non-kin ties that 
are either instrumental or affective in nature. All three relationship 
questions for the new network cognition survey used here correspond 
to questions used to generate the reference sociocentric networks. 
Moreover, we queried respondents about relationships (for example, 
‘do i and j spend free time together?’) that were obtained just a few 
weeks before the data collection focused on social network beliefs.

Specifically, we asked each villager to nominate those with whom 
they spend free time together, discuss personal or private matters, and 
consider their immediate kin. We combined these responses together 
to form an undirected sociocentric network according to the ‘union’ 
rule, such that we say that a tie exists between two individuals if either 
of them reports it; for example, we say that José and Julio spend free 
time together if either of them reports it (see Supplementary Results 
for robustness checks based on alternative definitions).

The survey consisted of two parts, represented by questions 1–3 
and 4–6 in Extended Data Table 1. We successively displayed the can-
didate pairs to each survey respondent. In addition, we displayed the 
faces of individuals rather than their names, to ensure that individuals 
are correctly identified (for example, more than one individual may 
share the same name in a community). When a new pair was selected, a 
cognizer was first asked whether they recognize each individual in the 
pair: for example, for a selected pair of individuals Rosa and Hector, the 
respondent was asked ‘Do you know Rosa?’ and ‘Do you know Hector?’ 
(questions 1 and 2). Then, if the respondent recognized both individu-
als, respondents were presented with both faces in the pair together, 

and the surveyor asked whether the two individuals know each other 
at all (question 3). If a respondent answered ‘No’, we assumed that the 
respondent believes that no tie exists between the pair, meaning that 
they would respond ‘No’ to the remaining questions. If respondents 
answer ‘Yes’ to this question, the surveyor moved to ask the main rela-
tionship questions (4–6).

The survey consists of these two stages to minimize the total sur-
vey time and avoid asking redundant questions to participants. This 
conditional survey logic follows the reasoning that individuals cannot 
meaningfully answer a query about a tie between two individuals when 
one or both individuals are unknown to the respondent. Therefore, 
participants are not asked about such ties. However, the respondents 
recognized the displayed individuals in the vast majority of cases (93.5% 
of the time, see Supplementary Table 9).

These specific relationship questions have been used to collect 
social network data in previous data collection waves and have been 
carefully defined for the study population. The two primary ques-
tions of interest for this study, ‘with whom do you spend free time?’ 
(free-time) and ‘with whom do you discuss personal or private matters?’ 
(personal-private) can be independent from each other and can apply 
to ties between kin or non-kin. We expected that estimation of these 
relationships involves the respondent’s drawing on distinct social 
information to demonstrate knowledge for each of the two tie types.

The survey was conducted with the TRELLIS network data collec-
tion platform48,98. This new survey of social network knowledge took 
an average of 14.23 min to complete.

Sampling procedure
We developed a method to sample 40 dyads to each of the 10,072 survey 
respondents. To circumvent the limitations of traditional methods, we 
sampled the array Y for each network and relationship type. Under our 
sampling procedure, we made use of sociocentric networks we mapped 
just a few weeks earlier to show each respondent a different random 
set of dyads. Consequently, the reference network was current, and it 
was also a relevant basis of comparison for data on individual beliefs 
collected here.

One of the major concerns in designing a sampling method in 
this context is to ensure that participants are asked about ties that are 
socially relevant and to vary important features of ties so that we are 
statistically powered to answer our key research questions.

More specifically, we sampled up to 40 ties to each respondent, 
stratifying on geodesic distance between a respondent and a pair, 
and the existence of the tie in the underlying network. We sampled 
a fixed number of ties at 1 up to 4 degrees of separation between the 
respondent and the pair. Furthermore, half of the ties presented rep-
resent real connections that exist in the reference network and half 
represent ties that do not exist in the network. In the latter case, the 
pair of individuals shown are not truly connected, such that neither 
individual reports the other as a relation (for example, both individu-
als do not report the other as someone with whom they spend free 
time). We stratified on this distance under the reasoning that ties 
relatively close to an individual in their network are of fundamentally 
deeper relevance for network cognition, and that faraway ties are 
simply less likely to be cognized. We define the distance between 
a cognizer, k, and a pair, (i, j), as the mean of the geodesic distance 
from k to i and from k to j.

In addition, we stratified sampling on the basis of distance in the 
network defined by the union of the kin, free-time and personal-private 
networks rather than the individual networks. We used this combined 
network to simplify the method for implementation. In this ‘union’ 
network, we say that a tie exists if at least one person in the pair nomi-
nates the other for at least one of the three relationships (for example, 
i and j are connected if j reports that they spend free time together, 
even if neither nominates the other for the other relationships). Con-
sequently, we stratified on distance between a pair and a cognizer in 
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this network. This design choice means that while 4 is the maximum 
distance in the union network, respondents may be further from the 
pairs they judge in any of the individual network types; consequently, 
individuals judge ties over a wider range of geodesic distances in the 
network (Supplementary Figs. 1 and 12). We graphically present the 
survey and sampling design in Fig. 1.

Below, we characterize the sampling procedure more formally, 
and we detail the steps of the procedure in Supplementary Table 10. 
To select the ties shown to survey respondents, we specified (1) the 
maximum geodesic distance from which an individual that is shown 
in the survey may be from the respondent, and the numbers of (2) 
real and (3) counterfactual ties to be inquired about at each distance.

The neighbourhood of individual i up to degree d is the subset 
of the social network, N, restricted to nodes that are no more than d 
degrees away from the individual. For instance, i’s neighbourhood up 
to degree 1 only includes i’s friends and also corresponds to i’s egocen-
tric network. The neighbourhood up to degree 2 not only contains i’s 
friends, but also the friends of i’s friends. Similarly, we can define the 
‘social orbit’ of an individual, up to some degree d, as the ego network 
up to degree d, with the pertinent addition of counterfactual ties. Spe-
cifically, we took the ego network of some cognizer, k, up to degree d. 
We then took the set of real relationships among the nodes, excluding 
k, and the set of possible relationships that do not exist among these 
nodes. Note that as d increases, the number of real ties approaches the 
number of ties in the whole social network minus the number of direct 
connections to k, and the number of counterfactual ties approaches 
the number of possible ties minus the number of ties that exist in the 
network.

In our setting, we defined a procedure to display up to 40 ties 
for each cognizer, k, within their social orbit up to degree 4. Conse-
quently, we sampled up to 5 real and 5 counterfactual relationships 
for each distance 1 to 4 degrees away in the ‘union’ network, for a 
desired total of 20 connections that exist in the underlying network 
and 20 that do not exist in that network. This ensured that we were 
powered to make comparisons both across distances within this 
range and over the underlying reality of the ties. For a participant, 
k, we stratified the set of valid pairs, those within 4 degrees of k, into 
distinct bins: one bin for the ties that exist and one for those that do 
not, at each distance from 1 to 4; for example, one bin is composed 
of real ties among first-degree neighbours, another bin is composed 
of real ties among second-degree neighbours and between first- and 
second-degree neighbours of k and so on. Note that these bins would 
contain many more than the desired number of ties, especially as 
distance from the respondent increases. Moreover, there are many 
more ties that could exist but do not in these social networks, where 
density is much less than unity (the mean density of the union network 
is 3.42%, s.d. = 0.021). However, it is also possible that a bin would 
contain fewer than the desired number of ties; for example, a respond-
ent would have fewer than five real ties among their first-degree 
neighbours if they only have two direct connections. Therefore, a 
participant might have fewer than 40 ties selected. We sampled ties 
from each bin uniformly at random.

We executed this procedure separately for each individual k. As 
a result, each person received a unique set of up to 40 ties which they 
were then asked about. Figure 1 illustrates the sampling procedure for 
a particular individual in a village network, and Fig. 1c gives an example 
of the survey responses for an individual survey participant, giving 
the underlying data structure that we analysed. No participant with 
a complete survey was excluded from any of the analyses presented. 
The mean age of the respondents was 38.901 (s.d. 17.059), and 64.873% 
were women.

Primary model
As a general description, we used mixed-effects logistic regression 
models to model the individual binary responses. As described above, 

survey respondents answered ‘Yes’ or ‘No’ when queried about up to 
40 ties drawn from their village social networks. Furthermore, they 
answered three questions for each displayed pair, stating whether they 
believe that the two individuals are immediate kin, whether they spend 
free time together, and whether they discuss personal or private mat-
ters. Hence, we have repeated measures such that individuals provide 
three responses for each unique pair that they judge. Individuals were 
also nested within villages. We included random effects to account for 
each of these nested levels.

In addition, we split the responses into two separate datasets, 
containing ties that truly exist in the reference network and those that 
do not. We modelled each dataset separately, and thereby estimated 
the conditional probability that a response is ‘Yes’ when it exists (the 
true positive rate) and the probability that a response is ‘Yes’ when it 
does not exist (the false positive rate) with separate logistic regression 
models. Together, these separate models represented the two inde-
pendent dimensions of accuracy. We further combined these models 
to estimate Youden’s J statistic, which is the true positive rate minus 
the false positive rate.

We modelled the responses with a range of individual, network 
and village-level characteristics. In addition, we included the geodesic 
distance from the survey respondent to the pair as a covariate. In the 
model of the false positive rate, we also included the distance between 
the individuals in the judged pair (which is necessarily 1 in the true 
positive rate model). The specifications of the true and false positive 
rate models are identical except for this difference.

Furthermore, all the results that pertain to cognizer and tie char-
acteristics are given by a single model, unless otherwise noted. We also 
present effect estimates rather than coefficient estimates since they are 
more interpretable and less sensitive than odds ratios99. Specifically, 
we included adjusted predictions at the mean and pairwise contrasts 
that correspond to discrete marginal effects at the mean. We varied a 
characteristic of interest (for example, age) over its observed range in 
the data, holding other model coefficients at their typical values, to 
observe its relationship with accuracy.

We give a more detailed description of our modelling strategy 
below. We modelled tie conception with multilevel logistic regres-
sion models that are appropriate for a binary outcome and which 
account for the nested structure of our data. This model allowed 
us to assess the determinants of accuracy in belief, and the effect 
of a respondent’s individual, village and network characteristics on 
beliefs about a tie.

The data were structured such that a respondent k ∈ 1,… ,N

g

 in a 
specific village g has beliefs about the relationship between, at most, 
40 pairs of other individuals i, j ∈ 1,… ,N

g

 in the network of village g, for 
a given relationship type R

[ij]g

, where r = 0 for ‘spends free time with’ 
and r = 1 for ‘discusses personal matters with’. Separately, H

[ij]g

∈ 0, 1  
indicates whether i and j is a tie between kin or non-kin. Thus, we let 
Y

r[ij]kgc

∈ 0, 1  be our dependent variable, representing respondent k‘s 
propositional attitude (hence the superscript ‘c’ for ‘cognized’) toward 
relationship of type r between individuals i, j ∈ 1,… ,N

g

 in village g. 
Observe that this contrasts with Y

r[ij]g

, which represents whether the 
respective tie exists in the underlying sociocentric (‘reference’) net-
work. Furthermore, we let our independent variables be individual, 
village and network characteristics of the respondent Xkg; for example, 
age, gender, wealth, coffee cultivation and degree centrality. We also 
included the average geodesic distance between individual k and the 
two individuals i and j in the network of type r, D

r[ij]kg

, and the geodesic 
distance between i and j when a direct tie between them does not exist 
in the sociocentric network (hence, only when Y

r[ij]g

= 0). In addition, 
we denoted by X

[ij]g

 characteristics of ties such as means, absolute dif-
ferences, or unique combinations of the characteristics of the individu-
als who compose a tie; for example, the average of the network degrees 
of i and j. Continuous-valued characteristics were standardized to range 
of 0 to 1. We fit the following mixed-effects logistic regression model 
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separately for ties that exist in the sociocentric network (b = 1) and 
those that do not (b = 0):
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where P is probability. All coefficients were indexed by b to reflect the 
fact that we estimated separately for the true and false positive rates. 
We included random intercepts for the village (ug) and respondent (skg). 
β refers to a single estimated coefficient and Λ refers to a vector of 
coefficients for a vector of characteristics. Specifically, Λ

1

 represents 
the association between response and individual and network features, 
Λ
2

 between response and features of ties, Λ
3

 the interaction between 
selected individual and tie attributes (for example, cognizer wealth 
and the average wealth of the pair), and Λ

4

 between response and 
village-level characteristics (where v1 and v2 indicate selected subsets 
of respondent and tie characteristics, respectively).

Note that a path may or may not exist between two individuals in 
the sociocentric network: i and j may exist in disconnected subcom-
ponents of the free-time network, even if they are linked in the union 
of the free-time, personal-private and kin networks. When a path does 
not exist, we say that the distance between those individuals is effec-
tively infinite. Consequently, we modelled the integer-valued geodesic 
distance as the interaction between an indicator for whether a path 
exists between the nodes (between both k and i, and k and j) and the 
geodesic distance (which is undefined when a path does not exist). We 
analogously represented the distance within a tie (between i and j when 
b = 0) and the distance in the kinship network (in Extended Data Fig. 1).

With this model, we assessed the extent to which individual and 
network characteristics of the respondent and the ties affect the likeli-
hood of k believing that a relationship of type h exists between i and j, 
regardless of its existence in the reference sociocentric network. Hence, 
we fit equation (1) conditional on the existence (Y

r[ij]g

= 0), or not 
(Y
r[ij]g

= 1), of the relationship of type r in the reference network to 
investigate the determinants of accuracy of prediction. Generally, we 
estimated effects from the model in equation (1) ranging over a char-
acteristic of interest while holding others at their population means 
or typical values in the population.

Over each condition, b = 1 and b = 0, respectively, we used these 
models to predict the true positive rate (TPR) and the false positive 
rate (FPR) as a function of an individual, tie, or network characteristic, 
as well as geodesic distance and tie type:
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where Θ
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= (R

[ij]g

,X

kg
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,D

r[ij]g

)

 combines all properties, 
except the kinship status of the tie, into a single vector. Θ¬p denotes the 
exclusion of the pth characteristic, and Θp only contains the pth char-
acteristic. Confidence intervals on these model predictions were esti-
mated by the delta method. For a focal characteristic, θp, we estimated 
each rate over its (standardized) range [0, 1], and held characteristics 
besides θp at their population means (that is, we held Θ¬p at ̄

θ

¬p

). This 
allowed us to investigate how, on average, for instance, the distance 
between the cognizer and the potential tie affects, in a different man-
ner, the specificity and sensitivity of beliefs. For example, individuals 
might be more likely to overestimate the number of ties in their 

immediate social orbit and underestimate ties further away, such that 
their sensitivity might increase with geodesic distance while specificity 
might decrease. Note that when Θ is not specified, it means that all the 
characteristics in Θ are not specified. We additionally estimated the 
marginal effect of kinship status, in which case we held each attribute 
in Θ at its mean or typical value in the population, such that, for exam-
ple, we computed TPR (h;θ) = P(Yc

r[ij]kg

= 1|Y

r[ij]g

= 1,H

[ij]g

= h).
In addition, we combined the effect estimates for each rate into a 

unidimensional measure of overall accuracy, Youden’s J  statistic. 
Consequently, we then derived this overall effect directly from two 
rates:

J (θ

p

;h,θ) = TPR (θ

p

;h,θ) − FPR (θ

p

;h,θ) (2c)

The J  statistic, ranges from −1 to 1, where 0 indicates chance per-
formance and accuracy improves from −1 up to perfect accuracy at 1. 
We describe the calculation and interpretation of this statistic and its 
relationship to receiver operator characteristic (ROC) analysis in Sup-
plementary Information. Confidence intervals for J  were calculated 
through a bootstrapping procedure to account for the uncertainty 
associated with combining the TPR and FPR estimates from the two 
models. We conducted a parametric bootstrap appropriate for mixed 
models, for the TPR and FPR models, with 10,000 iterations. For each 
iteration, we estimated the effects defined in equation (2a,b) to con-
struct the bootstrap distribution of each effect. Then, we used these 
replicates to repeatedly calculate equation (2c) to compute the boot-
strap distribution of the estimate for J  and then calculated the standard 
error for the estimate J. We further constructed the confidence ellipses 
by approximation to a bivariate normal distribution. Confidence inter-
vals were then constructed using a normal approximation. We further 
calculated and report contrasts (Extended Data Tables 2 and 3). We 
calculated discrete marginal effects at the extremes of the observed 
values in the population for the TPR (where (θp)min and (θp)max are the 
extrema of characteristic p on the standardized range):
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and analogously for J . Similarly, we calculated marginal effects over 
the unique combinations of categorical (and, degenerately, binary) 
characteristics. Furthermore, for covariates that exhibited a curvilinear 
or parabolic relationship with accuracy, we derived the value of the 
covariate with the maximum accuracy score, 

(θ

p

)

∗, over the observed 
range of θp. We then contrasted 

(θ

p

)

∗ with both the minimum and maxi-
mum of θp. We did this analogously to the contrasts in equation (3a,b). 
For example, for the true positive rate, we calculated
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As above, we did so separately for each accuracy metric. For exam-
ple, we estimated accuracy to be highest at around age 31, which we 
compared to the maximum and minimum age in the observed 
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population. In general, we present estimates and effects that stratify 
on the kin status of the tie, R

ijg

, due to its large effect on the model. 
ROC-space plots (explained in Fig. 2) present the effects stratified by 
kin status, while the effect plots (for example, right of each panel in 
Extended Data Fig. 2) only present estimates for ties between individu-
als who are not kin.

Finally, each participant k in each village g received an accu-
racy score for each rate (including J) and relationship (free-time 
and personal-private), corresponding to the model-adjusted effect 
estimate using the average cognizer-to-tie distance, the average i 
to j distance (for the FPR only), the average values of the tie proper-
ties and the cognizer-specific values of cognizer properties (that is, 
we used the respondent’s particular characteristics). We defined the 
respondent-level accuracy scores, respectively, as

TPR

kg

(r,h) = TPR (H

[ij]g

= h,R

[ij]g

= r,X

kg

,X

g

) (5a)

FPR

kg

(r,h) = FPR (H

[ij]g

= h,R

[ij]g

= r,X

kg

,X

g

) (5b)

and

J

kg

(r,h) = TPR (r,h) − FPR(r,h) (5c)

where the set of attributes at the cognizer and village (X
kg

 and X
g

, 
respectively) were held at their values for each respondent. All charac-
teristics left implicit were held at their population means or typical 
values. Note also that we stratified separately on the kinship status of 
the tie and the relationship type.

Two-stage estimation
As described above, we used equation (5a–c) to calculate a score 
for each individual and rate type, which were further combined 
to a measure of accuracy for each participant for each rate. These 
respondent-level estimated accuracy scores held Hijg = 0, such that we 
only considered the case of non-kin ties between individuals (i and j).

We used these scores in a second-stage regression model to esti-
mate the relationship between the true positive and false positive 
rates (Fig. 6a), and between social network acuity and knowledge of 
an exogenous health-related intervention.

To model the relationship between the TPR and FPR, we estimated 
an ordinary least squares (OLS) model:

TPR

kg

(r,h) = β

0

+ β

1

FPR

kg

(r,h) + β

1

FPR

2

kg

(r,h) + β

2

r

r[ij]g

+ Λ

T

1

X

X

X

kg

+ ϵ (6)

where TPR
kg

 and FPR
kg

 correspond to the first-stage model predictions 
for each participant and rate. We made further adjustments at the 
second stage for key characteristics (degree, age, age2, gender, religion, 
wealth, indigenous status) and relationship type. ϵ represents an error 
term. We present this analysis in Fig. 6a, as estimated marginal means 
over the observed range of false positive rates. We included FPR and 
its square to account for the diminishing marginal returns in the ability 
to detect true positives associated with additional increases in the FPR.

In addition, we modelled riddle knowledge, R
lkg

, which is a binary 
‘Yes‘/‘No’ (coded as 1 or 0) response variable for a specific riddle 
(indexed by l), and L

l

 is a categorical variable that refers to the specific 
riddle. Specifically, we included three distinct riddles, which are 
described in Supplementary Table 5. Commensurately, we fit a logistic 
model, adjusting for cognizer-level demographic characteristics:

logit [P (R

lkg

= 1)] = β

0

+ β

1

A

kg

(r,h) + β

2

[l = 2] + β

3

[l = 3] + Λ

T

1

X

X

X

kg

(7)

Here, R
lkg

 represents a particular binary riddle outcome (whether  
the cognizer knows riddle l), where A denotes one of TPR, FPR, or J ,  

representing k’s accuracy score, and X
kg

 demarcates the cognizer 
characteristics. Estimated marginal means across the range of pre-
dicted responses are presented in Fig. 6b. We estimated separate mod-
els for each accuracy metric.

For each estimated two-stage model, we accounted for uncertainty 
at both the first (equation 1) and second stage (equations 6 and 7) of 
estimation via bootstrapping. Specifically, for the first-stage model 
(equation 1), we conducted a parametric bootstrap appropriate for 
mixed models with 1,000 iterations. We simulated 1,000 response vec-
tors, and refit the model in equation (1) each time. At each first-stage 
iteration, we estimated the cognizer accuracy scores (according to 
equation 5a–c) and then estimated the second-stage model (equation 6 
or 7, as appropriate) 1,000 times in a second-level parametric boot-
strap. The outer iterations captured the uncertainty in estimation of 
the mixed-effects response model, and the repeated second-stage 
fits likewise captured the uncertainty in estimation of the outcome of 
interest. We collected the 1,000,000 replicates of each second-stage 
model parameter to calculate the adjusted standard errors of each 
model coefficient.

Genetic relatedness index
In addition to using self-reported kinship, we also collected genetic data 
for 17 villages (n = 1,333 individuals). We used the KING framework to 
measure genetic relatedness, developed for genome-wide association 
studies (GWAS)100. The assumption that the genotypes for all individu-
als in our population arise from a common set of allele frequencies 
was not met in our setting, where individuals come from different 
ethnicities. Consequently, we used the KING-robust method. While 
this method may be less directly interpretable than KING-homo, which 
ranges in the 0 to 1 interval, KING-robust gives accurate estimates of 
relatedness in the presence of population stratification.

This method estimates a kinship coefficient φ
ij

, for pair of indi-
viduals (i, j), which is defined as the probability that alleles sampled at 
random are identical by descent. This measure is unbounded from 
below, such that individuals are considered unrelated if they have a 
relatedness score φ ≤ 0, and ranges to φ =

1

2

 marking monozygotic 
twins. Established thresholds were used to infer that, for example, a 
relatedness score of 1

4

 is taken to imply that individuals are full siblings, 
and a score of 1

16

 is taken to represent 3rd degree relatives. While indi-
viduals were considered effectively unrelated with φ ≤ 0, the measure 
was defined100 as

̂

φ

i, j

=

N

Aa;Aa

− 2N

AA;aa

N

i;Aa

+ N

j;Aa

(8)

where N
Aa;Aa

 represents the total count of single nucleotide polymor-
phisms (SNPs) where both individuals i and j are heterozygous; analo-
gously, N

AA;aa

 represents the count of SNPs where both individuals are 
differently homozygous (that is, i is AA and j is aa, or the reverse). In the 
denominator, N

i;Aa

 represents the count of SNPs where i is heterozygous 
(and the same for j). Consequently, the measure is negative when the 
count of heterozygous locations is less than twice the sum of differently 
homozygous counts in the pair. Moreover, the index has a natural 
continuous interpretation such that individuals with increasingly 
negative values may be considered more genetically distant. This may 
reflect population structure101–103, which is known to be present in the 
current setting where the population is an admixture of European and 
Mayan indigenous populations.

In Supplementary Fig. 12, we observed that in the sample, the 
average pair of individuals shown to the survey respondents have a 
relatedness score of around 0.1. The kinship coefficient is provided by 
the KING-robust algorithm used specifically to execute GWAS studies 
and identify relatedness without relying on previous kinship informa-
tion or assuming population homogeneity (which has been found to 
lead previous methods to be biased towards relatedness).
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In Fig. 3b, we estimated the relationship between social network 
accuracy using each accuracy metric and this bounded continuous 
measure of kinship. We estimated separate models for the TPR and FPR 
that replace the binary self-reported kinship measure H

[ij]g

 with the 
quantity defined here, in equation (1). We made the analogous switch 
for the estimates for distance in the kinship network and the specific 
kin category, in Extended Data Fig. 1.

In addition, as a further robustness check on the estimates from 
the ‘KING-robust’ method, we have added results from the KING-homo 
method in Supplementary Fig. 13. Both the KING and KING-robust algo-
rithms are included in the second-generation version of the PLINK soft-
ware103 used to calculate the relatedness measures. Furthermore, we 
present the distribution of kinship coefficients for each self-reported 
immediate kinship relation in Supplementary Fig. 14, which indicates 
that the self-reports yielded genetic kinship values within the expected 
ranges (with a mean close to 0.25)100.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Compliant with our privacy and confidentiality assurances to our 
research participants and with other legal obligations, data will be 
made available on our secure server, subject to data release provisions 
in force at Yale and the Yale Institute for Network Science (or succes-
sor entities) at the time of release. Access to data requires proof of 
IRB approval and human participants certification. Contact nicholas.
christakis@yale.edu for inquiries regarding the data.

Code availability
All analysis was conducted in the Julia programming language104 
(v.1.10.2). The sampling procedure was executed with the ‘Sampling-
PerceivedNetworks.jl’ Julia package105 (which we are pleased to release). 
See the Supplementary Methods for details on software packages 
used. Additional paper replication materials are available on GitHub 
at https://github.com/emfeltham/honduras-css-paper-release.git (ref. 
106). See Supplementary Results for further details.
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Extended Data Fig. 1 | Alternative definitions of kinship. In addition to 
the binary definition of kinship (used in the primary analyses) and genetic 
relatedness (Fig. 3b), we consider the effects of (a) specific type of kinship tie 
as a categorical variable and (b) distance in the kinship network. We find that 
the categorical results are consistent with the binary definition, and distance 
in the kinship network broadly corresponds to that of genetic relationship. 

In both panels, gray bands (LHS) displays 95% confidence ellipses around the 
mean estimates. Error bars (RHS) display 95% confidence interval around the 
mean estimates. Results are from n = 9,998 survey respondents in both panels, 
corresponding to 177,928 individual responses for the TPR estimates, and 477,393 
responses for the FPR estimates.
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Extended Data Fig. 2 | Individual determinants of respondent accuracy. 
We observe that several key demographic characteristics are associated with 
an individual’s ability to accurately predict the ties in their village network. 
In each panel, the left-hand image shows the marginal effect of the cognizer 
characteristic on accuracy in ROC-space (grey shading represents the 95% 
bootstrapped confidence ellipse of the predictions from the two models), and 
the right-hand image shows the marginal effect with respect to each individual 
accuracy measure: the true positive rate, false positive rate, and the overall 

summary measure of accuracy (Youden’s J). Intervals represent 95% confidence 
levels, calculated via normal approximation for the two rates, and bootstrapped 
for the J statistic. (a) Gender, (b) Age, (c) Education, (d) Wealth and (e) Network 
degree (here, effectively an average of the count of first-degree neighbors for 
the two relationships analysed, personal-private or free-time). Supplementary 
Fig. 7 presents additional characteristics. Results are from n = 9,998 survey 
respondents in both panels, corresponding to 177,928 individual responses for 
the TPR estimates, and 477,393 responses for the FPR estimates.
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Extended Data Fig. 3 | Tie determinants of respondent accuracy. We find 
that a range of properties of ties have statistically significant associations with 
their tendency to be accurately conceived. In each panel, LHS, marginal effect 
on accuracy in ROC-space. Grey shading represents the 95% bootstrapped 
confidence ellipse of the predictions from the two models. RHS, marginal effect 
of each individual accuracy measure: the true positive and false positive rates 
and the summary measure, Youden’s J. Intervals represent 95% confidence levels, 
calculated via normal approximation for the two rates, and bootstrapped for 
J, around the mean estimates. Estimates are stratified by whether they are of a 
tie among kin or not. (a) Relationship type; we include a covariate for the two 
relationships considered, free-time or personal-private. (b) Gender combination 
of tie members, for example, both women or both men. (c) Average age of tie 
members. (d) Difference in age between tie members. (e) Average degree of tie 
members. (f ) Difference in degree between tie members. (g) Cognizer-to-tie 

geodesic distance. Individuals may or may not have a defined path between them 
in the reference network; when there is a path, individuals exist at a geodesic 
distance defined as the minimum number of steps between them; note that 
individuals who do not have a path between them necessarily have a path in at 
least one of other networks considered in this study, by design. (h) Distance 
between tie members. When a tie does not exist between two individuals, a 
specific geodesic distance may separate them (or they may have no path between 
them in the network). The TPR is set to the population average; but it does 
not have a meaningful interpretation in assessments of ties that do not exist. 
Parameters are fit from separate models of each rate, conditional on tie verity in 
the reference network. See Methods for details of model specification. Results 
are from n = 9,998 survey respondents in both panels, corresponding to 177,928 
individual responses for the TPR estimates, and 477,393 responses for the FPR 
estimates.
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Extended Data Fig. 4 | Tie social identity determinants of respondent 
accuracy. We find that characteristics related to the social identity of a pair of 
individuals (i and j) affects how well that tie is conceived of by individuals k.  
(a-d) LHS, marginal effects on accuracy in ROC-space. Grey shading represents 
the 95% bootstrapped confidence ellipse of the predictions from the two  
models. RHS, marginal effect of each individual accuracy measure: the true 
positive and false positive rates and the summary measure, Youden’s J. Intervals 
represent 95% confidence levels, calculated via normal approximation for the 
two rates, and bootstrapped for J. (a) Religion combination of tie members.  

(b) Indigenous status of the pair. Parameters are fit from separate models of each 
rate, conditional on tie verity in the reference network. (c) Absolute difference 
in wealth between the tie members. (d) Average wealth of the tie members. (e) 
Interaction between the average wealth of a pair and the cognizer’s wealth on the 
(LHS) TPR and (RHS) FPR. (f ) Interaction between the average wealth of a pair 
and the cognizer’s wealth on the summary measure, J. See Methods for details 
of model specification. Results are from n = 9,998 survey respondents in both 
panels, corresponding to 177,928 individual responses for the TPR estimates, and 
477,393 responses for the FPR estimates.
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Extended Data Table 1 | Social network belief questionnaire

Each survey respondent is asked about their beliefs about the existence of relationships between pairs of individuals drawn from their village social network.
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Extended Data Table 2 | Contrasts for tie characteristics

Contrasts for tie characteristics. Each accuracy measure represents the difference between the predicted value for each level of the contrast. 95% confidence intervals are presented in 
parentheses.
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Extended Data Table 3 | Contrasts for respondent and village characteristics

Each accuracy measure represents the difference between the predicted value for each level of the contrast. 95% confidence intervals are presented in parentheses.
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Extended Data Table 4 | Accuracy on kinship ties

Survey respondents are remarkably accurate in their knowledge of the kinship relations in their networks. Rows indicate the response to survey question 6, where respondents indicate the 
type of kin relationship (if any) that holds between a presented pair. Columns indicate the status in the underlying sociocentric (reference) network. Respondents make correct identifications 
are made around 96.66% of the time, on average across the categories.
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