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SUMMARY

Despite a growing interest in the gut microbiome of non-industrialized countries, data linking deeply
sequenced microbiomes from such settings to diverse host phenotypes and situational factors remain un-
common. Usingmetagenomic data from a community-based cohort of 1,871 people from 19 isolated villages
in the Mesoamerican highlands of western Honduras, we report associations between bacterial species and
human phenotypes and factors. Among them, socioeconomic factors account for 51.44% of the total asso-
ciations. Meta-analysis of species-level profiles across several datasets identified several species associ-
ated with body mass index, consistent with previous findings. Furthermore, the inclusion of strain-phyloge-
netic information modifies the overall relationship between the gut microbiome and the phenotypes,
especially for some factors like household wealth (e.g., wealthier individuals harbor different strains of Eu-
bacterium rectale). Our analysis suggests a role that gut microbiome surveillance can play in understanding
broad features of individual and public health.

INTRODUCTION

Thanks to long-run investments in gut microbiome research in

industrialized countries, the role that the human microbiome

plays in health-related phenotypes and its relationship to socio-

economic factors, and, reciprocally, how such phenotypes and

factors might influence the microbiome, is becoming increas-

ingly clear.1,2 For instance, an important prior study investigated

such associations in a large cohort in the Netherlands, expli-

cating these relationships.1

However, the majority of the human population lives

outside of North America and Europe, and nearly half of the

human population lives outside urban areas. Non-industrial-

ized populations often experience problems with access to

healthcare resources, have distinctive patterns of social

interactions (e.g., low population density, fewer contacts

with strangers), and have other distinctive exposures (e.g., an-

imals and diet).3–5 Furthermore, prior studies of non-industrial-

ized populations have documented the presence of rich

uncharacterized taxa that are often absent in industrialized

cohorts.6

Therefore, here, we investigate the relationships of both un-

characterized taxa and known species in a large sample drawn

from an isolated setting in Honduras in order to describe the rela-

tionship of gut microbiome species and diverse attributes. We

assessed 123 phenotypes and food, animal, and socioeconomic

factors, and we compared selected outcomes with other West-

ern and non-Western cohorts. Finally, we explored the role that

strain-level information may play in these relationships—specif-

ically, how influential factors like wealth or diet may drive strain-

level variation in the gut microbiome.

RESULTS

Isolated setting in western Honduras
The village communities in the western highlands of Honduras

are geographically remote (Figure 1A), consisting of a large pro-

portion of descendants of Mayan peoples who depend on sub-

sistence agriculture and coffee cultivation. We collected popula-

tion-level data in these small communities, including deep

sequencing data and a comprehensive set of both individual

and community-level characteristics regarding diverse
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socioeconomic, psychological, and health attributes. Our cohort

consists of 1,871 people living in 19 villages, which are part of a

larger cohort developed for a different original purpose.7,8

The adult population in our 19 villages ranges from 66 to 432

individuals. The average age of participants was 41 (SD = 17;

range: 15–93), 63.7% were women, and 41.8% were married.

Each of the 19 villages has its own intricately connected social

networks with minimal inter-village contact, and they are sepa-

rated not only by distance but also by elevation (Figure 1A).

Stool samples were collected for the 1,871 individuals and

sequenced to characterize their microbiome composition. The

average read depth is 82,082,675 reads (SD = 812,462.4) (Fig-

ure S1). Variations in microbiome composition can be appreci-

ated even within the same village. For instance, we observed a

pattern of decreasing similarity as individuals live farther away

from the village center, at the geographic periphery of the village

(Pearson correlation coefficient r = 0.311, p = 0.0022, Figures 1B

and 1C). In contrast, villagers located at the network center of the

social network within each village have a more similar micro-

biome to the rest of the village, unlike those at the social periph-

ery (linear regression b = 3.66 3 10�5, p = 0.761; see STAR

Methods for details and also the inset of Figure 1A).

A

B C

Figure 1. Geographic overview of the

Honduras microbiome project

(A) A satellite view of the Honduran villages (in

orange) that constitute the microbiome dataset. In

the inset, a zoomed-in satellite view of an illustra-

tive village with each inhabitant (n = 57) colored

with the respective Bray-Curtis dissimilarity value

relative to the average microbiome composition of

the rest of the village is shown and they are con-

nected by white edges, which represent social

interactions between individuals. Green nodes are

indicative of higher similarity in microbiome

composition to the rest of the village, whereas red

nodes are more dissimilar. Square nodes indicate

males, and circle nodes indicate females.

(B) Scatterplot of Bray-Curtis dissimilarity (of the

single village shown in A) and the distance of

households from the population-weighted village

centroid (see STAR Methods) shows a positive

correlation (Pearson correlation coefficient r =

0.144, p = 0.05) between gut microbiome dissim-

ilarity and distance from the village center across

samples. Individual dots are colored according to

the person’s dissimilarity from the village’s

average microbiome.

(C) Combined plot of all the Bray-Curtis dissimi-

larities and distances from village centroids for all

villages’ inhabitants colored by village. The black

regression line indicates a consistent trend

(Pearson correlation coefficient r = 0.311,

p = 2.2 3 10�3) of increasing microbiome dissim-

ilarity with regard to the distance from the village

centroid. The light gray areas indicate a 95%

confidence interval.

Species, phenotypes, and factors
Overall, we found 2,148 significant asso-

ciations when looking at 639 microbial

species and 123 factors (including physical and mental health,

medication use, diet, animal exposure, and social and economic

measurements; see Table S1). All comparisons involved appro-

priate statistical controls (see STAR Methods) and were cor-

rected for multiple hypothesis testing using a false discovery

rate procedure. Distinctly, we also found 988 associations with

pathways (see Table S2).

The 123 factors are variously measured as continuous and

discrete variables (Tables S3, S4, and S5), and, as expected,

several of the variables were found to be correlated (for example,

individuals with high hemoglobin A1c strongly correlated with re-

porting a diagnosis of diabetes, and the household wealth index

correlated with owning a TV [Figure S2]). Similarly, the clustering

of factors based on species effect sizes (obtained from the spe-

cies-phenotype association models) showed that multiple fac-

tors within different categories have similar microbial signatures

(Figure S3). Apart from individual phenotypes and factors,

broader sub-categories of factors are correlated as well, like

diet and economic factors, physiological variables and medica-

tion use, education and social factors, and so on. Food and an-

imal factors also have a relative stronger correlation with socio-

economic factors (Figure S2). Overall, this suggests that
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Figure 2. Microbiome association with factors

(A) 81 species that best represent gut microbiome associations with 52 factors (chosen from health, food and animal, and socioeconomic categories; see

Table S1 for a complete list of associations). The number of individuals manifesting the respective factor is shown in brackets. The presence of color shows

(legend continued on next page)
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economic factors are intertwined with a broad array of factors

(like health, food, animal, and other environmental variables),

making them evenmore germane in the context of the gut micro-

biome in non-Western settings.

Health phenotypes
We found a total of 402 species to be significantly associated

with at least one health phenotype (Tables S1 and S3). Among

the 402 significant species, 302 of them belonged to the phylum

Firmicutes, making it the most associated with health pheno-

types. Among all the associated species, 34.58%were identified

as unknown9 at several taxonomic levels. Species uSGB2239

from the Rikenellaceae family and Parolsenella massiliensis

were the most frequently associated species, significantly asso-

ciated with 5 health phenotypes; in particular, both were identi-

fied as negatively associated with body mass index (BMI), al-

lergies, and intestinal illness (Figure 2A). uSGB2239 was also

negatively associated with antibiotics and positively associated

with dementia, and Parolsenella massiliensis was also associ-

ated with anti-hypertensive medication (negatively) and open-

ness (negatively) (see STAR Methods). Microbial species from

the Rikenellaceae family have been previously found to be asso-

ciated with at least one mental health disorder (positively associ-

ated with obsessive-compulsive disorder)10 and enriched in type

2 diabetics in a Pakistani cohort.11 In another study, Rikenella-

ceae was found to be significantly associated with high blood

sugar in Indian men.12 Coincidentally, we found that BMI was

significantly associated with uSGB2239 of the Rikenellaceae

family.

Furthermore, a total of 136 pathways were associated with at

least one health phenotype, totaling 157 pathway associations.

Among the 157 associations, physiological variables had 85 as-

sociations, followed by 24 associations in chronic illness pheno-

types, 26 in medication, 2 in acute disease, and 19 in personality

measures, alcohol, cigarettes, and mental health (Table S2).

We performed association analysis for a subset of individuals

falling in unhealthy ranges of various health phenotypes (i.e., BMI

<18 and BMI >25 to account for underweight and overweight in-

dividuals, respectively, or diastolic pressure >89 to account for

hypertensive individuals) compared to healthy individuals (Fig-

ure S4; Table S6). A total of 73 species were associated withmul-

tiple unhealthy phenotypes, of which uSGB14313 of the Clostri-

dia family was associated with 3 phenotypes in unhealthy ranges

(hemoglobin A1c [5.7–6.4], BMI [25–30], and BMI [30–35])

(Figure S4A; Table S6).

Moving on from individual species, the diversity of an individ-

ual’s microbiome (measured with Shannon diversity) was

computed, with an average alpha diversity of 3.7; incidentally,

there was no significant difference in village-level alpha diversity

(ANOVA p = 0.218). We evaluated whether the alpha diversity it-

self was associated with various health (and other) phenotypes.

The majority of the villagers self-reported themselves as healthy

(n = 1,407, 75.20%), and only 162 villagers (8.65%) reported hav-

ing more than one disease. We observed that villagers with re-

ported illnesses (except arthritis and diabetes) had lower diver-

sity relative to healthy villagers (Figure 2B); in particular,

villagers with reported stomach (Wilcoxon rank-sum test p =

1.48 3 10�4) and intestinal illnesses (Wilcoxon rank-sum test

p = 9.313 10�5) had decreased diversity. Villagers who reported

taking various medications also had lower diversity (Figure 2C);

anti-parasitic drug users showed the lowest diversity (Wilcoxon

rank-sum test p = 0.018), followed by anti-diarrheal users (Wil-

coxon rank-sum test p = 0.032) and antibiotic users (Wilcoxon

rank-sum test p = 2.26 3 10�4). We found no material associa-

tions of microbiome diversity with other categories of

medications.

We also performed a contrast analysis by comparing the gut

microbiome composition of these self-reported healthy individ-

uals to individuals who reported at least one chronic condition

by using differential abundance analysis, andwe identified a total

of 6 species that were differentially abundant between the two

groups (Figure S4B; see STAR Methods). Lachnospiraceae bac-

terium (SGB4906) is the sole species found to be enriched in

healthy individuals. On the other hand, uSGB1663 and

uSGB27424 of the Prevotellaceae family, Spirochaetia bacte-

rium, Coprococcus, and uSGB6369 of the Clostridia family

were found to be enriched in diseased individuals.

Overall, all the health phenotypes put together contribute

5.7%of the total variance explained inmicrobial species compo-

sition (Figure S5; Table S7). Similarly, 11.6% of the variance in

pathway composition is relevant to health phenotypes.

Animal exposure and diet factors
We explored possible associations with animal exposure and

diet.1,13–15 An unusual feature of our setting is that more than

90% of villagers reported having exposure to different types of

animals, including wild animals, farm animals, and pets, afford-

ing possible zoonotic transmission. Overall, for all food and ani-

mal factors, 205 species were found to be significantly associ-

ated with at least one of the factors, resulting in 437

associations (Figure 2A; Table S4). Among all the associating

bacterial species, 27% were unknown. Among the 205 signifi-

cantly associated species, 122 of them belonged to Firmicutes,

making this phylum themost commonly associated with specific

animals or food categories. We found 10 pathways associated

with exposure to animals as well (Table S2). Animal exposure

significant associations for that phenotype-species pair (false discovery rate < 0.05); the intensity of the color corresponds to the strength of the effect size.

Negative associations are indicated by red and positive by blue. Unknown species are indicated with ‘‘{}’’ specifying the taxonomic level at which the species is

known. Listed factors without a sample size are reported for the whole sample.

(B) Shannon diversity of healthy and chronically ill individuals highlights differences in overall microbiome diversity; healthy individuals (n = 1,407) are chosen as a

reference (gray dashed line).

(C) Shannon diversity is calculated between different medication use categories; non-medicated individuals (n = 1,246) are chosen as reference (gray dashed

line).

(D) Shannon diversity of villagers belonging to households classified by household wealth index ranging from 1 (least wealthy) to 5 (most wealthy).

All comparisons were performed using the Wilcoxon rank-sum test and corrected for multiple hypothesis testing.
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contributed to 2.3% of the variation in species composition. We

found no difference in overall Shannon diversity in individuals

exposed to different animal categories (Figure S6).

Diet has been extensively studied and shown to have a sub-

stantial relationship with the gut microbiome.15–17 We assessed

associations with microbial features and food frequency con-

sumption and found 360 significant associations with diet (Fig-

ure 2A). Bacteroides intestinalis was the most associated spe-

cies with food, associated with 8 different food types. In the

past, B. intestinalis has been implicated in the context of dietary

fiber as contributing to an increase of xylan utilization in the gut.18

Even thoughmost of the individuals’ daily diet consists of tortillas

and beans, we measured diet diversity using the diet diversity

score (DDS)19 (see STAR Methods and Figure S7). We identified

a total of 7 significant associations between the DDS and gut mi-

crobiome species (Figure 2A).

We also found 235 pathway associations with food factors

(Table S2). Looking at significant associations between path-

ways and food factors, we found that the pathway L-histidine II

degradation (PWY-5028) had a strong positive association with

consumption of beef and pork. This pathway was also found to

be enriched in humans consuming meat in a previous study,20

as dipeptides containing histidine are the major form of dipep-

tides in mammalian skeletal muscle.21 The role of biologically

active peptides is highly correlated with consumption of beef

(a protein-rich food) and its enrichment via gut microbiota.22

Overall, diet was responsible for 1.85% and 2.14% of the vari-

ance explained in our sample in species and pathways compo-

sition, respectively (Figure S5).

Socioeconomic factors
Overall, we found 1,105 significant associations (51.44% of total

associations) with socioeconomic factors. For all socioeconomic

factors, 319 species were found to be significantly associated

with at least one of the factors (Figure 2A; Table S1). Among all

the 319 associated species, 28.8% of them were unknown, and

185 of them belong to Firmicutes, making it again the most asso-

ciated phylum for socioeconomic factors. Moreover, uSGB5239

of the Lachnospiraceae family is the most-associated species,

statistically significantly associated with 14 socioeconomic fac-

tors. We also found 586 associations with pathways, with one of

them being associated with 9 socioeconomic factors (Table S2).

Socioeconomic factors are relevant to many exposures and

personal habits. Higher monthly expenditures are correlated

with a better diet and better household essentials such as a

refrigerator or paved floor.We observed thatmost of the bacteria

associatedwith highermonthly expenditures are the same as the

ones associated with better diet quality.23,24

Although all the participants in our study are considered to be

living in poverty, economic status still varied among them and

was associated with possessions and diets potentially relevant

to the microbiome; overall, the average household wealth index

score (ranging from least wealthy [1] to most wealthy [5]) is 3.26

(SD = 1.33). In terms of measures of economic status, both

monthly expenditure and travel were associated with the micro-

biome. Total wealth was also correlated with owning various

items (such as a TV or a mobile phone), some of which (e.g., a

refrigerator or a stove) might affect food consumption and others

of which (such as having glass windows, cement walls, more

sleeping rooms, an earthen floor, or a metal roof) might affect mi-

crobiome exposures via other routes (Figures 2A and S3). We

observed similar patterns of association where a high wealth in-

dex was associated with the same bacterial species associated

with owning expensive items (like glass windows), and vice

versa. The variance explained by economic factors was 4.13%

for species and 3.70% for pathways (Figure S5), indicating the

relative importance of economic factors in explaining variation

in the gut microbiome composition.

With respect to overall microbial diversity, the subjects from

the least well-off households had a Shannon index that was

higher than that of the subjects from the wealthier households

(in the top 4 quintiles) (Figure 2D).

Overall relationship between species and the
phenotypes and factors
From the clustering of associations (Figure 2A) and the dendro-

gram (Figure S3), it can be observed that different factors can

be linked together. This link can be visualized through the rela-

tionship between the gut microbiome and the factors. For

example, species that are enriched in socioeconomic factors

(such as TV ownership and household wealth index) show a

similar pattern in vegetable, fruit, and meat consumption. Previ-

ous studies have found diet diversity to be correlated with food

security and wealth in rural settings.25,26 Overall, health, food,

animal, and socioeconomic factors are clustered together,

which is also visibly demonstrated through the microbiome-

phenotype lens. Multiple factors from different categories can

also be tied together by a singles species. For instance,

uSGB5239 (of the Lachnospiraceae family) is associated with

22 different phenotypes from the health category (BMI, stomach

illness, dementia), the food and animal category (vegetables,

fruits, natural juice, beef/pork, fish), and the socioeconomic

category (grades >6, travel, household wealth index, TV, no elec-

tronics, earth/sand floor, ceramic floor, glasswindows, clay/mud

walls, cement walls, and sleeping rooms).27

Comparison with other datasets and countries
We compared microbial signature across datasets from other

countries. Across the nine cohorts considered, we identified

BMI to be the sole host phenotype shared across all of

them.6,28–35 In our dataset, we also identified BMI to be one

of the phenotypes with the most significant associations

(n = 275). Therefore, a meta-analysis of BMI on 5,001 samples

from the nine cohorts identified 21 significant species. Sutterella

wadsworthensis (SGB9286) was found to be associated with a

higher BMI in most of the datasets, while Bacilli bacterium

(SGB47359) is themost negatively associated species (Figure 3).

Coefficients from our cohort are statistically significant for all 21

species. Among other cohorts, one cohort in particular had the

greatest number of significant coefficients (13 out of 21).28

Higher abundances of Parabacteroides merdae (SGB1949)

have been found in obesemice and have also exhibited a protec-

tive effect against obesity-associated atherosclerosis.36 In hu-

man studies, Butyrivibrio crossotus (SGB5065) was found to be

enriched in non-obese individuals,37 and Sutterella wadswor-

thensis (SGB9286; one of our strongest positively correlated
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species) was found to be 10 times more abundant in obese chil-

dren-adolescents38—both of which were consistent with these

meta-analysis findings.

Furthermore, we also compared our associations with the

ones found by the Dutch Microbiome Project. We found 13 spe-

cies-phenotype associations in common with the Dutch study, 8

of whichwerewith BMI, andButyrivibrio crossotus,Roseburia in-

ulinivorans, Faecalibacterium prausnitzii, Methanobrevibacter

smithii, Eubacterium siraeum, Haemophilus parainfluenzae, Mit-

suokella multacida, and Flavonifractor plautii were found to be

significantly associated in both datasets with BMI. Moreover,

Haemophilus parainfluenzae was also significant for hemoglobin

A1c in both datasets. Ruminococcus torques was significant in

both datasets for antibiotic use. Finally, monthly income/expen-

diture had 3 significant species in common: Alistipes shahii, Bar-

nesiella intestinihominis, and Flavonifractor plautii. The presence

of very few significant species in common between the

Honduras and Netherlands cohorts is largely due to differences

in measurements between the two cohorts and the relatively low

number of common species across the two cohorts (see

Table S8 for a list of possible comparisons).

Relevance of microbial strains
Finally, moving beyond species-specific associations with phe-

notypes and factors, we observed a meaningful variation be-

tween the genetic makeup of the same species across different

individuals that is, in turn, associated with diverse factors (Fig-

ure 4A). For instance, individuals with a higher household wealth

index are likely to have a different strain of Eubacterium rectale

compared to less wealthy individuals in a set of 1,610 individuals

(Fisher’s exact test p = 4.99 3 10�4) (Figure 4A).

Moreover, adding strain-phylogenetic information in the

model alters the relationship between species and factors overall

(Figure 4B) by inducing a small shift. Among all the effect sizes,

0.2% of them switch direction when adding the phylogenetic ef-

fect (Figure S8; Table S9).

Looking deeper into the strain diversity in individuals, we evau-

lated the variation of the percentage of polymorphic sites across

individuals and factors. As an illustration, we observed that

wealthier individuals (b = 0.08345, p = 1.26 3 10�7) or those

consuming a higher number of eggs (b = 0.626, p = 0.1146)

had a higher percentage of polymorphic sites (Figures 5A and

5B; Table S10). This comports with findings in another study

where percentages of polymorphic sites from just Prevotella co-

pri strains were found to be different between recent South Asian

Canadian immigrants and first-generation South Asian

Canadians.39

DISCUSSION

Integrated, standardized, large, population-based cohorts to

study the microbiome are uncommon, but such studies offer

the prospect of identifying factors shaping the gut microbiome

or being shaped by it. By extending our knowledge of the human

gut microbiome to a novel population in a lower-and-middle-in-

come (LMIC) setting, assessing previously uncharacterized taxa,

−0.3 −0.2 −0.1 0.0 0.1
Correlation coefficient

Sp
ec

ie
s

Body Mass Index (All cohorts)

Figure 3. Meta-analysis of bacterial species associated with BMI across different cohorts

Random-effect meta-analysis of BMI (body mass index) on 5,001 gut metagenomes species-level profiles across different Western and non-Western cohorts

(points shown indicates correlation coefficients from each separate cohort). Species with statistically significant random effects estimates (n = 21) were included

(see STAR Methods for more details and Table S11).
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having a very broad range of phenotypes and factors, and using

strain-level genomic information, our goal is to advance under-

standing of the possible relationship of the gut microbiome

with diverse human attributes.

We find that variation in the gut microbiome across individ-

uals living in a traditional way in remote Honduran villages is

partly explained by variations in diet, lifestyle, environment,

and health factors. Overall, we found 2,148 unique associations

between 639 bacterial species and 123 phenotypes/factors.

Examining pairwise correlations between phenotypes and all

gut microbial species, broader categories like food and animal

factors were highly associated with socioeconomic factors,

suggesting that wealth is an important underlying factor in

this non-Western cohort. We also observe diet to be highly

correlated with education and social factors. The associations

between species and attributes included many uncharacter-

ized species, which in many cases were shown to have a stron-

ger effect than known species. Phenotype and factor associa-

tions were also identified after accounting for strain-level

phylogenies, which often had a profound effect on the extent

of the association between microbiome species and the attri-

butes under consideration.

Still, despite measuring a large number and variety of factors,

only 19.2% of the variation across individuals in microbiome

composition was accounted for by these factors, in keeping

with prior studies.1,40–42 This suggests that microbiome compo-

sition in individuals may be quite idiosyncratic or may depend on

details of social interactions or unmeasured environmental expo-

sures. Rare species may also help account for this variation. The

current understanding of how individual and population-level mi-

crobiomes come to be shaped is thus still incomplete. Neverthe-

less, the factors we ascertained in Honduras did combine to ac-

count for 19.2% of the species variation (as noted) and 33.4% of

the pathway variation; this may be compared to a study from the

Netherlands where the measured phenotypes accounted for

13% and 16.2%of the variation, respectively,1 although different

methodologies for taxonomic and functional characterization

were used here, reflecting ongoing methodological advances.

Shotgun metagenomic sequencing enabled us to further classify

the functionality aspects of the gut microbiome, giving us a

distinct advantage over 16S rRNA sequencing. Accurate

profiling of the microbiome can be impacted by the choice of

primers in the 16S method.43 Furthermore, in addition to these

limitations to the 16S method, updated reference databases

and tools enable us to profile a far greater number of species.6,44

It has already been established that the gut microbiome

composition can be related to various health conditions in

both humans and mice,45 and conditions like cancer, obesity,

diabetes, anxiety, and depression can induce shifts in gut

composition (as previously shown in many mostly Western

A B

Figure 4. Microbial strain association with host factors

(A) In this strain-level phylogeny of Eubacterium rectale (SGB4933 group) (as an illustrative microbe) in 1,610 individuals, leaves are annotated with the household

wealth index (as an illustrative host factor). A cluster of individuals (annotated in gray) situated on a different strain of Eubacterium rectale (separated branch) are

more likely to have higher wealth compared to rest of the individuals (Fisher’s exact test p = 0.0004998).

(B) Comparison of significant effect sizes obtained from a linear mixed model with and without adding strain-level phylogeny information across significant

species-phenotype relationships overall. Coefficients from the associationmodels with and without phylogenetic information are positively correlated (Spearman

correlation coefficient r= 0.989, p < 2.23 10�16), and the red line is the linear fit (b = 0.9351, intercept = 0.2016, p< 2.23 10�16), showing the relationship between

the two models. The deviation of the red fitted line from the dashed line shows the important effect of adding the strain-level phylogeny in the species-phenotype

association model (Table S9).
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populations).1,45–51 Alcohol intake and cigarette use have been

linked to gut microbiome dysbiosis, as well as medications.52–56

In keeping with these prior studies, we confirm such findings in

this rural LMIC cohort.3–5,57 Indeed, we found 606 associations

between the microbiome and health-related phenotypes and

factors. Chronic illnesses and medication use were the most

strongly associated. Among chronic illnesses, intestinal illnesses

show the greatest differences. We uncovered 273 total associa-

tions between gut microbiome species and physiological mea-

surement ranges that may be linked to underlying chronic condi-

tions such as obesity, diabetes, and hypertension. Moreover, we

found 62 associations with mental health phenotypes alone, a

relatively understudied area.

Comparisons with other non-Western cohorts can highlight

some of the differences and similarities between Honduras

and such cohorts as well. Comparing BMIs across 5 other

non-Western cohorts (from India, Cameroon [2], Peru, and

Madagascar) and 4 western cohorts (Great Britain/USA, USA

[2], and China) using a meta-analysis approach, we found 21

species significantly associated with BMI in all cohorts,

among which the Honduran correlation coefficients were

consistently significant and close to the unbiased estimate,

reflecting stable yet significant associations because of the

sample size.

Looking at the overall microbial composition among healthy

and chronically ill subjects, the Shannon diversity was gener-

ally lower in chronically ill people, especially those with al-

lergies and gastrointestinal illnesses. Moreover, comparing

healthy individuals to those who are chronically ill, we found

6 taxa to be differentially enriched in one of the groups. Lach-

nospiraceae bacterium is the only significant species differen-

tially enriched in healthy individuals. On the other hand, 2 un-

known and 3 known species, uSGB1663 and uSGB27424 of

the Prevotellaceae family, Spirochaetia bacterium, Coprococ-

cus, and uSGB6369 of the Clostridia family, were differentially

enriched in chronically diseased individuals. Among medica-

tion users, those taking anti-parasitic medication had the

largest drop in overall diversity.

A B Figure 5. Relationship of variability in poly-

morphic sites with two host factors

(A) Polymorphic site variability of uSGB4905

shows a gradual increase in the percentage of

polymorphic sites in individuals consuming more

eggs in their regular diet (n = 312).

(B) Another demonstration of how variability in

polymorphic sites changes with phenotype. Here,

progressively wealthier individuals have a higher

percentage of polymorphic sites in Prevotella co-

pri clade C (SGB1644) (n = 1,458).

Another factor that greatly influences

the gut microbiome is diet. Our sample

population exhibits a consistent diet,

with beans and tortillas consumed by

most people daily. Still, we found 360 as-

sociations with food categories. More-

over, just as a previously studied Dutch

cohort found that pets had notable associations with the micro-

biome,1 we likewise found 77 associations with a (broader) range

of animal exposures.

Social and economic factors had 1,105 associations, with the

bulk of the strong associations coming from unknown species.

The gut microbiome samples had 947 unique associations with

economic factors alone, making it the second highest associ-

ated category of variables we examined, after health. Wealth dif-

ferences in individuals can also manifest in the form of more

diverse strains in some species being present in wealthier indi-

viduals. Prior research in Honduras has highlighted the crucial

importance of socioeconomic status in addressing health in

such communities,58 and the microbiome varies in important

ways along this axis, even in this poor setting.

Social interaction is an integral part of Honduran villagers’ life.

In total, 123 unique associations with various social network fac-

tors were found. Studies investigating social interactions be-

tween mice have shown the evolutionary advantage of having

behaviors that enhance social interaction that consequently fa-

cilitates microbiome transmission.45,59,60 In wild mice, social as-

sociations are predictive of microbiome composition, and the

microbiome is correlated across mice interaction networks.61

In humans, strain-level similarities have been shown in familial

and partner networks within and outside households.62–64

Whether these interactions translate into exposures that directly

contribute to health is an important area for further work.

Finally, our samples were collected from individuals spread

across 19 villages separated in space and elevation, and the

overall gut microbiome samples were observed to vary with

the relative spatial position within the villages; the dissimilarity

score with a village-averaged microbiome increased as subjects

lived further away from the village center. Relatedly, we found 3

significant associations with elevation.

Uncharacterized taxa play a vital role in all these associations,

as in prior LMIC cohorts.6 Despite the number of unknown spe-

cies in the Honduran cohort being about a third of total species,

their relative strength of associations was observed to be higher

in all the phenotype/factor categories. Distinctly, strain-level
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information is also relevant to the microbiome-phenotype rela-

tionship and should, optimally, be accounted for.

Limitations of the study
To fully understand the effects of host factors like diet and environ-

ment, surveying the exact quantity of various food groups (in addi-

tion to the food frequency questionnaire) could improve the accu-

racy of our associations of diet with gut microbiome. As for

environmental factors, investigating the exact sources of water

and food shared between individuals could help more accurately

answer the impact of a shared environment on the gutmicrobiome

in comparison to other host factors. And, of course, our findings

arise from the analysis of data from a single region of the world.

Conclusions
These findings advance understanding the interplay between

various phenotypes and host factors on the one hand, and the

gut microbiome on the other. By expanding our knowledge of

the human microbiome to a novel non-Western cohort, it is

possible to further our understanding of the role of the gut micro-

biome in chronic illness and, at the same time, open up opportu-

nities to use such findings to develop inexpensive biomarkers to

aid diagnostics in rural settings.65–67 To the extent that a healthy

microbiome is driven bymodifiable social and environmental fac-

tors (such as diet, smoking, living arrangements, lifestyle, and so

on), understanding which factors to target or what possible mi-

crobiome-modifying interventions to implement could help

advance individual and collective health in diverse settings.
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impairment by antibiotic-induced gut dysbiosis: Analysis of gut micro-

biota-brain communication. Brain Behav. Immun. 56, 140–155.

57. Kim, D.A., Hwong, A.R., Stafford, D., Hughes, D.A., O’Malley, A.J., Fowler,

J.H., and Christakis, N.A. (2015). Social network targeting to maximise

population behaviour change: a cluster randomised controlled trial. Lancet

386, 145–153.

58. Arps, S. (2011). Socioeconomic status and body size among women in

Honduran Miskito communities. Ann. Hum. Biol. 38, 508–519.

59. Rosenberg, E., Sharon, G., and Zilber-Rosenberg, I. (2009). The hologe-

nome theory of evolution contains Lamarckian aspects within a Darwinian

framework. Environ. Microbiol. 11, 2959–2962.

60. Carlson, S.J., O’Loughlin, A.A., Anez-Bustillos, L., Baker, M.A., Andrews,

N.A., Gunner, G., Dao, D.T., Pan, A., Nandivada, P., Chang, M., et al.

(2019). A Diet With Docosahexaenoic and Arachidonic Acids as the Sole

Source of Polyunsaturated Fatty Acids Is Sufficient to Support Visual,

Cognitive, Motor, and Social Development in Mice. Front. Neurosci.

13, 72.

61. Raulo, A., Allen, B.E., Troitsky, T., Husby, A., Firth, J.A., Coulson, T., and

Knowles, S.C.L. (2021). Social networks strongly predict the gut micro-

biota of wild mice. ISME J. 15, 2601–2613.

62. Brito, I.L., Gurry, T., Zhao, S., Huang, K., Young, S.K., Shea, T.P., Naisilisili,

W., Jenkins, A.P., Jupiter, S.D., Gevers, D., and Alm, E.J. (2019). Trans-

mission of human-associated microbiota along family and social net-

works. Nat. Microbiol. 4, 964–971.

63. Valles-Colomer, M., Blanco-Mı́guez, A., Manghi, P., Asnicar, F., Dubois,

L., Golzato, D., Armanini, F., Cumbo, F., Huang, K.D., Manara, S., et al.

(2023). The person-to-person transmission landscape of the gut and oral

microbiomes. Nature 614, 125–135.

64. Pullman, J., Beghini, F., Alexander, M., Shridhar, S.V., Prinster, D., Brito,

I.L., and Christakis, N.A. (2023). Detailed social network interactions and

gut microbiome strain-sharing within isolated Honduras villages. Preprint

at bioRxiv. https://doi.org/10.1101/2023.04.06.535875.

65. Xiao, L., Zhang, F., and Zhao, F. (2022). Large-scale microbiome data inte-

gration enables robust biomarker identification. Nat. Comput. Sci. 2,

307–316.

66. Wynford-Thomas, R., and Robertson, N.P. (2017). The economic burden

of chronic neurological disease. J. Neurol. 264, 2345–2347.

67. Vishnempet Shridhar, S., and Christakis, N.A. (2023). Approaching dis-

ease transmission with network science. Nat. Rev. Bioeng. 2, 6–7.

https://doi.org/10.1038/s44222-023-00139-0.

68. Cantu, V.A., Sadural, J., and Edwards, R. (2019). PRINSEQ++, a multi-

threaded tool for fast and efficient quality control and preprocessing of

sequencing datasets. Preprint at PeerJ. https://doi.org/10.7287/peerj.

preprints.27553v1.

69. BMTagger https://ftp.ncbi.nlm.nih.gov/pub/agarwala/bmtagger/.

70. Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible

trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.

71. Lungeanu, A., McKnight, M., Negron, R., Munar, W., Christakis, N.A., and

Contractor, N.S. (2021). Using Trellis software to enhance high-quality

large-scale network data collection in the field. Soc. Networks 66,

171–184.

72. Dixon, P. (2003). VEGAN, a package of R functions for community ecology.

J. Veg. Sci. 14, 927–930.

73. Beghini, F., McIver, L.J., Blanco-Mı́guez, A., Dubois, L., Asnicar, F., Ma-

harjan, S., Mailyan, A., Manghi, P., Scholz, M., Thomas, A.M., et al.

(2021). Integrating taxonomic, functional, and strain-level profiling of

diverse microbial communities with bioBakery 3. Elife 10, e65088.

https://doi.org/10.7554/eLife.65088.

74. Kahle, D., and Wickham, H. (2013). Ggmap: Spatial visualization with

ggplot2. R J. 5, 144.

75. Kuznetsova, A., Brockhoff, P.B., andChristensen, R.H.B. (2017). LmerTest

package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26.

https://doi.org/10.18637/jss.v082.i13.

76. Balduzzi, S., R€ucker, G., and Schwarzer, G. (2019). How to perform a

meta-analysis with R: a practical tutorial. Health 22, 153–160.

77. Hansen, T.F., Bolstad, G.H., and Tsuboi, M. (2022). Analyzing disparity

and rates of morphological evolution with model-based phylogenetic

comparative methods. Syst. Biol. 71, 1054–1072.

78. Mallick, H., Rahnavard, A., McIver, L.J., Ma, S., Zhang, Y., Nguyen, L.H.,

Tickle, T.L., Weingart, G., Ren, B., Schwager, E.H., et al. (2021).

Cell Reports 43, 114442, July 23, 2024 11

Article
ll

OPEN ACCESS

http://refhub.elsevier.com/S2211-1247(24)00771-X/sref42
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref42
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref43
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref43
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref43
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref44
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref44
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref44
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref44
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref45
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref45
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref45
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref45
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref46
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref46
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref46
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref47
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref47
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref47
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref48
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref48
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref48
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref49
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref49
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref49
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref49
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref50
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref50
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref50
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref51
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref51
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref51
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref51
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref51
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref52
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref52
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref52
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref52
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref53
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref53
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref53
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref53
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref53
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref54
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref54
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref54
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref54
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref54
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref55
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref55
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref55
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref55
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref56
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref56
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref56
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref56
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref56
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref57
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref57
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref57
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref57
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref58
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref58
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref59
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref59
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref59
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref60
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref60
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref60
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref60
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref60
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref60
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref61
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref61
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref61
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref62
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref62
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref62
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref62
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref63
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref63
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref63
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref63
https://doi.org/10.1101/2023.04.06.535875
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref65
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref65
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref65
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref66
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref66
https://doi.org/10.1038/s44222-023-00139-0
https://doi.org/10.7287/peerj.preprints.27553v1
https://doi.org/10.7287/peerj.preprints.27553v1
https://ftp.ncbi.nlm.nih.gov/pub/agarwala/bmtagger/
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref70
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref70
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref71
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref71
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref71
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref71
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref72
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref72
https://doi.org/10.7554/eLife.65088
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref74
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref74
https://doi.org/10.18637/jss.v082.i13
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref76
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref76
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref76
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref77
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref77
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref77
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref78
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref78


Multivariable association discovery in population-scale meta-omics

studies. PLoS Comput. Biol. 17, e1009442.

79. Revell, L.J. (2024). phytools 2.0: an updated R ecosystem for phylogenetic

comparative methods (and other things). PeerJ 12, e16505.

80. Pasolli, E., Schiffer, L., Manghi, P., Renson, A., Obenchain, V., Truong,

D.T., Beghini, F., Malik, F., Ramos, M., Dowd, J.B., et al. (2017). Acces-

sible, curated metagenomic data through ExperimentHub. Nat. Methods

14, 1023–1024.

81. CDC (2023). Centers for Disease Control and Prevention (Centers for Dis-

ease Control and Prevention). https://www.cdc.gov/.

82. Chemistry, G. Reference range SI reference intervals SERUM. https://

www.nbme.org/sites/default/files/2020-07/Laboratory_Reference_

Values.pdf.

83. Williams, N. (2014). The GAD-7 questionnaire. Occup. Med. 64, 224.

84. Kroenke, K., Spitzer, R.L., andWilliams, J.B. (2001). The PHQ-9: validity of

a brief depression severity measure. J. Gen. Intern. Med. 16, 606–613.

12 Cell Reports 43, 114442, July 23, 2024

Article
ll

OPEN ACCESS

http://refhub.elsevier.com/S2211-1247(24)00771-X/sref78
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref78
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref79
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref79
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref80
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref80
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref80
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref80
https://www.cdc.gov/
https://www.nbme.org/sites/default/files/2020-07/Laboratory_Reference_Values.pdf
https://www.nbme.org/sites/default/files/2020-07/Laboratory_Reference_Values.pdf
https://www.nbme.org/sites/default/files/2020-07/Laboratory_Reference_Values.pdf
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref83
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref84
http://refhub.elsevier.com/S2211-1247(24)00771-X/sref84


STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests should be directed to Dr. Nicholas A. Christakis (nicholas.christakis@yale.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Metagenomic sequences for the study participants are deposited in NBCI SRA and available under accession number

PRJNA999635.

d The code for replicating the analysis is available at https://github.com/human-nature-lab/Phenotype-paper. (Zenodo https://
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EXPERIMENT MODEL AND STUDY PARTICIPATION DETAILS

Sample collection, library preparation, and sequencing
Participants were instructed on how to self-collect the fecal samples using a training module and promptly returned samples to a

local team which then stored them in liquid nitrogen at the collection site and then moved them to a�80 C� freezer in Copan Ruinas,

Honduras. Samples were then shipped on dry ice to the United States and stored in �80 C� freezers.
Stool material was homogenized using TissueLyzer from Qiagen and the resulting lysate was prepared for extraction with the

Chemagic Stool gDNA extraction kit (PerkinElmer) and extracted on the Chemagic 360 Instrument (PerkinElmer) following the man-

ufacturer’s protocol. Sequencing libraries were prepared using the KAPA Hyper Library Preparation kit (KAPA Biosystems). Shotgun

metagenomic sequencing was carried out on Illumina NovaSeq 6000. Samples not reaching the desired sequencing depth of 50Gbp

were re-sequenced on a separate run.

Rawmetagenomic reads were deduplicated using prinseq lite (version 0.20.268) with default parameters. The resulting reads were

screened for human contamination (hg19) with BMTagger69 and then quality filtered with trimmomatic70 (version 0.36, parameters

‘‘ILLUMINACLIP:nextera_truseq_adapters.fasta:2:30:10:8:true SLIDINGWINDOW:4:15 LEADING:3 TRAILING:3 MINLEN:50’’).

This resulted in a total of 1,871 samples with an average read depth is 82,082,675 (SD = 812,462.4) (Figure S1). The adult popu-

lation in our 19 villages ranges from66 to 432 individuals. The average age of participants was 41 (SD= 17; range: 15–93); 63.7%were

women; and 41.8% were married. The average household wealth index score (ranging from least wealthy (1) to most wealthy (5)) is

3.26 (standard deviation 1.33), measured from various household items.

Local involvement in the research
In keeping with proper standards for such research, we worked closely with the local population of Copan, sought feedback and

approval from officials at the Ministry of Health (MOH) of Honduras, and endeavored to provide practical benefits to the local com-

munity. Here, we briefly summarize this history and outline some of our principles and actions in this regard.8

Whenwe began designing this cohort project in 2013 (for thewhole cohort of 176 villages and 24,702 people in the parent RCT), the

Bill andMelinda Gates Foundation (BMGF) introduced us to the Inter-American Development Bank (IDB), which has been supporting

and doing work throughout Latin America, and IDB in turn introduced us to the Honduras MOH. Because of this pathway to getting

the project launched, we worked with local and regional public health organizations and with local leaders. From the outset when the

original underlying cohort for this study was impaneled, we sought extensive local involvement, beginning with a needs assessment

where local village residents told us about topics of concern to them in a series of meetings in villages throughout the Copan region.

We periodically briefed both the communities and theMOH about our findings.We also provided othermaterial benefits to the local

community. Whenwe tested people for parasites as part of our study, we gave them the results of their tests and arranged for them to

be treated. When we tested people for vision, we provided corrective glasses. We solicited ideas from the local community about

what infrastructure improvements we could make, and we repaired many local playgrounds and clinics as a result. We arranged

for an American company to provide free portable handheld ultrasound devices to the local health clinics, which was much appre-

ciated by local providers. In terms of capacity building, we hired and trained over 100 local people and built capacity in the region.

Throughout our work in Honduras, and given the extent of local involvement at the regional and MOH levels, we endeavored to act

with integrity, curiosity, and respect in all relationships.

Finally, we note that this research would not have been prohibited in the USA. This work is not likely to result in stigmatization,

incrimination, or discrimination for the participants, and we have carefully safeguarded all data from threats to the privacy or security

of our participants, which has constrained the individual-level data released here.

METHOD DETAILS

Taxonomic profiling and diversity analysis
Quantification of organisms’ relative abundance was performed using MetaPhlAn 4,9 which internally mapped the metagenomes

against a database of �5.1M marker genes describing more than 27k� species-level genome bins (SGB).

We identified a total of 2,508 species in our dataset. Among the 2,508 species, 639 species were used for association analysis after

filtering for minimum relative abundance values (10�2), and a minimum of 10% prevalence in the population (n = 187).

We performed strain-level profiling for these species with StrainPhlAn 49(parameters: ‘‘-phylophlan_mode accurate’’)

Microbiome species richnesswas estimated using the Shannon entropy index and the total number of observed species (i.e., those

with relative abundance simply greater than zero). Multidimensional scaling analysis (cmdscale R function) was performed on the

Bray-Curtis dissimilarity index (vegdist function from the vegan R package72) calculated on the relative abundances obtained by

MetaPhlAn4.

Functional potential analysis was performed usingHUMAnN 3.0.73 Gene family profileswere normalized using relative abundances

and collapsed into MetaCyc pathways.
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To understand the amount of variance explained by various factors, we performed a PERMANOVA analysis (adonis function from

the vegan package72) using the ‘‘bray’’ method; the diversity matrix was calculated on both species-level relative abundances and

MetaCYC pathway relative abundances as input, including the 123 phenotypes variables into the model. All the comparisons were

run with 999 permutations.

Factor characterization
We measured a broad range of phenotypes and factors using standard measures.7 Description and statistics on all factors can be

found in Tables S2–S4. Physiological measurements were deemed within normal limits in accordance with CDC81 and NBME82

guidelines (Figure S3).

We used self-reported information to discern whether people were healthy or were diagnosed with various conditions. General

anxiety disorder is derived from a set of 7 questions from a self-reported survey-based questionnaire though our TRELLIS software,71

which assigns a score of 0 to ‘‘Not at all’’, 1 to ‘‘Several days’’, 2 to ‘‘More than half the days’’, and 3 to ‘‘Nearly every day’’. The scores

are added up (maximum of 21) and partitioned as: Minimal or none (%5), Mild (6–10), Moderate (11–15), and Severe (R16).83 The

PHQ9 (Patient Health Questionnaire) score measuring depression was computed similarly, with the levels being: Minimal or none

(%5),Mild (6–10), Moderate (11–15), Moderately severe (16–19), and Severe (R20).84 Personality traits likeOpenness or Nervousness

were also based on self-reported questions, where the participants were asked to rate themselves between strongly disagree to

strongly agree for each of the personality questions.

The Frequency of intake of various food items was self-reported, ranging from: ‘‘Never/rarely’’ to ‘‘Every day’’. These frequencies

were used as input in the diet-microbiome associationmodel. The diet diversity score (DDS)19 was calculated by classifying individual

food types into one of the following categories: cereals, roots/tubers, vegetables, fruits, meat/poultry/offal, eggs, fish/seafood,

pulses/legumes/nuts, milk and dairy products, oils/fats, or sugar/honey. If any of these food items were consumed daily, the respec-

tive categories would get 1 for that individual. The sum across these categories would define the DDS score of this individual. The

maximum possible DDS score would be 11 and the minimum would be 0.

Numerical values were reported for alcohol frequency and cigarette frequency. The daily alcohol intake ranged from ‘‘1 or 2’’ to ‘‘10

or more’’ drinks. Cigarette usage was reported as a ‘‘Yes’’ or ‘‘No’’.

The household wealth index is computed using Multiple Correspondence Analysis (MCA) based on all the household items. The

index ranged from 1, indicating low wealth, to 5, indicating high wealth.

We explored associations with several social network features, including the degree, transitivity, and betweenness centrality of

each individual. To uncouple the effects of kin and non-kin social connections, we investigated microbiome associations in familial

networks, friendship networks, and combined networks. In the combined network, we computed the amount of kin in a person’s first

3 degrees of social connections (i.e., among a person’s friends, friends of friends, and friends of friends of friends) to assess the rela-

tive effect of having kin close to a person within the social network. In addition to kin and non-kin relationships, we also explored the

microbiome’s association with cohabiting partners.

Population-weighted village centroid
We collected the GPS coordinates (latitude and longitudes) of all the building in the village. Since multiple individuals can reside in a

building, the population-weighted centroid was chosen as the reference center of the village, which was then used to compute every

individual’s distance from this village center. Satellite plots were created using ‘‘ggmap’’ package in R.74

QUANTIFICATION AND STATISTICAL ANALYSIS

Model for microbiome-factor regression
For the association model with species-level microbiome and the factors, a linear mixed-effects model was used to explore the rela-

tionship of the variability in the factors and the variability in the microbiome. The linear mixed-effect models were created using the

lmerTest R package (v 3.1).75

For every species and phenotype pair, we computed the following model:

Species abundance � Factor of interest + Age+Sex+BMI+Batch Effect+Bristol Stool Scale

+DNA concentration+Sampling date+ ð1 j Village IDÞ
Species-level relative abundances were transformed using the CLR (Centered-Log Ratio) and used as input.

Since basic demographic attributes (age, sex), technical factors (DNA concentration, sequencing batch, sampling date), and BMI

and Bristol stool scale accounted for most of the species and pathway variation, we used those variables as primary controls in our

association models (Figures S5 and S9).

Furthermore, all associations were corrected for bothmicrobiome species and factor usingmultiple hypothesis testing (Benjamini-

Hochberg correction) and all significant associations are corrected for a FDR (False Discovery Rate) < 0.05.
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Meta-analysis of BMI across non-Western cohorts
We screened publicly available datasets using the curatedMetagenomicData package (v3.6.2)80 to look for cohorts from similar pop-

ulations and sharing the most number of available metadata. We identified a total of 5 non-western studies having in common

BMI6,29,30,34,35 along with 4 western cohorts28,31–33 amounting to 5,001 samples. Data was downloaded from NCBI SRA using the

accessions available through ’curatedMetagenomicData’ and processed using the same pipeline described before.

We then performed a meta-analysis on BMI values using species-level relative abundances using. Age, gender, and lifestyle cate-

gory were used as controls. We discretized age by binning the value into three levels: child-adolescent (<18), adult (18–60), and se-

nior (>60).

Also, a random effect meta-analysis was performed using species-level relative abundances normalized with CLR using the meta

package (v 4.9–9,76). After using linear model to obtain correlation coefficients, the metacor function (from meta package) was used

to Random effects using Paule-Mandel estimator method. p-values obtained were adjusted using FDR (Benjamini-Hochberg cor-

rected). In total, 21 species were found significant after corrections. The full results are available in Table S11.

Strain-factor analysis and phylogenetic signal
For strain-level analysis, we used the Almer function from the ‘‘evolvability’’ R package (v 2.0.0).77 Almer incorporates phylogenetic

trees in mixed linear models as a correlated random effects structure.

Species abundance � Phenotype of interest + Age+Sex+BMI+Batch effect+Bristol Stool Scale

+DNA concentration+Sampling date+ ð1 j Village IDÞ + ð1 j phylÞ
where, ‘‘phyl’’ is the variance-covariance matrix calculated from the species’ phylogenetic tree. To evaluate the strain-phylogenetic

effect, we compared beta coefficients from this model and the same model without the random effect on the variance-covariance

matrix.

The phylogenetic signal was estimated using the ‘‘phylosig’’ function in ‘‘phytools’’ R package (v 1.9–23)79 using the ‘lambda’

method. Overall, among the 78,597 species-phenotype pairs (639 species and 123 phenotypes), 52,864 pairs were chosen after

filtering for phylogenetic signal. The phylogenetic signal was estimated for the phylogenetic tree of each species versus the pheno-

type of interest.

Polymorphic sites analysis
For polymorphic sites, files suffixed with ‘‘.polymorphic’’ in StrainPhlAn 4 output were used after discarding 0’s in the ‘‘percentage of

polymorphic sites’’ column so as to discard subjects without the species of interest. Wilcoxon rank-sum tests were performed across

categories within phenotypes to check for significant changes in polymorphic sites. In addition, linear regression was also performed

to investigate the relationship between polymorphic site percentage and individual host phenotypes (see Table S10).

Differential abundance analysis
We used MaAsLin2 (v 1.0.0)78 to determine the association between species and disease status (healthy or unhealthy) of individuals

and to estimate the effect sizes and p-values. Statistically significant species were retained. Species-level relative abundances were

normalized using CLR and used as input for MaAsLin2. Age, sex, BMI, DNA concentration, sampling date, and Bristol stool scale

were used as fixed-effect controls and village as a random effect control. All the resulting p-values obtained from the MaAsLin2

models were corrected for multiple hypothesis testing using FDR.
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Figure S1 Honduran Gut microbiome description (Related to STAR methods). (A) Collector’s curve of species 

richness (number of species per sample) across varying percentages of rarefied reads for all 1,871 Honduran samples 

(in light dots and box plot) show an increasing trend followed by a plateau at 60% of the all the rarefied reads. The 

average species richness is around 380 (plateau). (B) Collector’s curve of alpha-diversity vs percentage of read-

depth across all 1,871 Honduran samples show a flat trend. (C) The overall average of Alpha diversity across cohort 

is 3.7 and there is no village statistically different in distribution of alpha diversity compared to any other village 

(Wilcoxon rank-sum test). Black dots indicate mean alpha diversity for each village. 

 

 



 

 

Figure S2 Phenotype-phenotype correlation (Related to Figure 2). (A) A matrix showing raw correlations 

between the phenotypes from every category (health, food and animals, socioeconomic factors). Column names are 

the same as the row names indicated on the right side of the matrix. Color ranges from positive (green) to negative 

(red) correlations. The correlations are also clustered according to the hierarchical clustering and annotated 

according to broader category or sub-category of phenotypes and factors (see Supplementary table 1).  

 



 

 

 

Figure S3 Phenotype-microbiome association clustering (Related to Figure 2). Effect sizes from associations of 

all 123 phenotypes with 639 species are hierarchically clustered with respect to phenotypes. This phenotype tree is 

another representation of how similarly behaving a pair of phenotypes are with respect to how they associate with 

the gut microbiome overall. 



 

 

 

Figure S4 Relationship between health and microbiome (Related to STAR methods). (A) Graphical 

visualization of physiological measurements (anthropometrics) of all N=1,871 villagers, with the grey box 

indicating normal values of each respective physiological measurement. The red box indicates the bounding limit of 

healthy ranges. (B) In the entire cohort, there were 468 chronically diseased individuals (who had at least one 

chronic condition).  Differential abundance in healthy vs chronically diseased individuals using MaAsLin2 (see 

Methods) shows six significant species (after FDR correction of p-values). One of them (Lacnospiraceae 

bacterium) was differentially abundant in healthy individuals. On the other hand, five species (uSGB1663 and 

uSGB27424 from the Prevotellaceae family, Spirochaetia bacterium, Coprococcus, and uSGB6369 from the 

Clostridia family), two of which are unknown, were differentially abundant in chronically diseased individuals.  

 



 

 

Figure S5 Variance explained (Related to Figure 2).  PERMANOVA analysis (999 permutations, p-value<0.001) 

computed on all phenotypes shows the variance explained in species and pathway compositions with a breakdown 

of sub-categories of all phenotypes (health, food and animal, socioeconomic factors). Overall, all the phenotypes 

together explain 19.2% and 33.4% of the variance explained in species and pathways, respectively. “Technical 

factors” here include age, sex, DNA concentration, sequencing batch, and sampling date. (See Supplementary 

Table 7 for complete breakdown of variance explained in each sub-categories)  

 



 

 

Figure S6:  Alpha diversity of individuals exposed to animals (Related to Figure 2).   Shannon diversity 

distribution among villagers exposed to pets, farm animals, and wild animals shows no significant differences 

between groups. 

 

 

 



 

 

Figure S7: Diet diversity score (Related to Figure 2 and STAR methods).  Boxplot showing the Shannon 

diversities of individuals with varying diet diversity scores (see STAR Methods for calculation of DDS scores). 

 

 

 

 

 

 

 



 

 

Figure S8: Comparison of species and strain models (Related to Figure 4).  (A) Side-by-side comparison of the 

direction of associations in both models (with and without strain-phylogenies). Each quadrant indicates positive or 

negative associations in either model. (B) Figure showing the presence of significant associations in both models 

compared to their presence in either of the models. 

 

 

 

 

 

 



 

 

Figure S9: Principal Coordinates Analysis (PCoA) (Related to STAR methods).  PCoA plot of the overall gut 

microbiome computed across 1,871 samples using the species-level relative abundances (legend) generated by 

MetaPhlAn4. Health status, age, sex, body mass index (BMI), and Bristol stool scale are shown as arrows along with 

the direction of influence. Samples are colored with the relative abundances of Prevotella copri (clade A). 
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