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Negative or antagonistic relationships are common in human social networks, but they
are less often studied than positive or friendly relationships. The existence of a capacity
to have and to track antagonistic ties raises the possibility that they may serve a useful
function in human groups. Here, we analyze empirical data gathered from 24,770
and 22,513 individuals in 176 rural villages in Honduras in two survey waves 2.5 y
apart in order to evaluate the possible relevance of antagonistic relationships for broader
network phenomena. We find that the small-world effect is more significant in a positive
world with negative ties compared to an otherwise similar hypothetical positive world
without them. Additionally, we observe that nodes with more negative ties tend to be
located near network bridges, with lower clustering coefficients, higher betweenness
centralities, and shorter average distances to other nodes in the network. Positive
connections tend to have a more localized distribution, while negative connections are
more globally dispersed within the networks. Analysis of the possible impact of such
negative ties on dynamic processes reveals that, remarkably, negative connections can
facilitate the dissemination of information (including novel information experimentally
introduced into these villages) to the same degree as positive connections, and that they
can also play a role in mitigating idea polarization within village networks. Antagonistic
ties hold considerable importance in shaping the structure and function of social
networks.

antagonistic ties | social networks | small-world effect | information diffusion | idea polarization

The overall structure of a social network is determined not only by its positive ties but
also by the negative ties within it. But positive and negative relationships have distinct
patterns of distribution within networks, and different structural relevance (1–3), and the
topological characteristics of friendly and antagonistic ties appear to be fundamentally
different (4). While many studies have confirmed classical structural balance theory (e.g.,
that your friend’s enemy is your enemy) (5–10), the real structural impact of antagonistic
ties may be even more complex. For instance, antagonists of antagonists may, in fact,
be likely to become antagonists themselves rather than friends (2, 3). An incomplete
assessment of balance within triads can lead to incorrect conclusions (10, 11). And the
evolution of structural balance over time is also important (12).

From an evolutionary perspective, positive interactions, such as cooperation and
mutualism, are clearly critical for success, but the potential benefits (if any) of negative
relationships are less clear (13). Yet, there are several potential indirect benefits of the
capacity for, and existence of, antagonism. For instance, dominance hierarchy plays a
crucial role in reducing aggressive encounters and promoting group stability (14, 15).
Competition can drive individuals to pursue personal success (16). In the music industry,
negative ties with high-status actors may improve sales for low-status actors (17).
Or negative relationships might aid in developing certain otherwise useful skills
(useful in positive relationships as well) (18), as well as have relevance to personal
resilience (19, 20).

Here, we use empirical data from 176 villages in rural Honduras (21) to explore the
antagonistic world of social interactions arising from asking 24,770 and 22,513 subjects
in two survey waves separated by 2.5 y the question: “Who are the people with whom
you do not get along well?” Our primary focus is on the topological structure of these
ties and their potentially beneficial role in vital network processes, such as contagion or
polarization occurring within the social network as a whole. We are interested in studying
the topological location of antagonistic ties within the whole villages and exploring how
they might relate to the network structure of the positive world—for example, how
established theories of network science, such as the small-world effect, are affected by the
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existence of these ties, and how negative ties influence other
metrics of network position otherwise based solely on positive
ties.

Furthermore, we are interested in the potential advantages and
disadvantages of negative ties with respect to certain important
dynamic phenomena in the network. For instance, negative
interactions might slow down the spread of contagious diseases
in a network that has both positive (attractive) and negative
(repulsive) interactions, as compared to a network that is entirely
based on positive interactions. Alternatively, negative ties might
enhance the dissemination of germs (or information) by locating
the nodes linked to more negative connections in the region of
networks that are sensitive areas for transmission. Moreover, with
respect to information, antagonistic ties within groups might also
be associated with a reduction in echo chambers and polarization.

Results

We rely on data collected in a comprehensive sociocentric
network study (SI Appendix, Table S36) that involved 24,770
individuals at “Wave 1” (W1) and 22,513 individuals at a second
wave 2.5 y later [“Wave 2” (W2)] residing in 176 isolated villages
in western Honduras (21, 22) (Fig. 1 A and B). For the sake
of simplicity, we only use the giant components of each village
network, which encompass an average of 99% of the nodes in each
village (comprising a total of 24,621 individuals) during Wave 1
and an average of 98% of the nodes in each village (comprising a
total of 22,103 individuals) at Wave 2 (SI Appendix, Table S1).

Negative Ties and Network Communities. According to classical
balance theory, dynamic systems in the real world progress
toward a state with two communities: positive edges are situated
within network communities while negative edges are located
between them (6). Consequently, community detection, the
unsupervised decomposition of a network into groups based on
statistical regularities in network connectivity, could assist in
identifying the locations of negative ties. We apply a minimum-
description-length-based approach [MDL (DC-SBM)] (23), a
model-selection-based community detection algorithm that tries
to balance the model’s complexity with the data’s goodness of
fit (24) to analyze the positive ties within the network. Contrary to
the predictions of classical balance theory, and aligned with more
modern assessments of balance theory (12, 25), the results reveal a
similar probability of negative ties occurring within communities
as compared to between them (no significant difference; see
Fig. 1C for negative ties and Fig. 1D for positive ties).
Corresponding results of another community detection method,
modularity maximization, are provided in SI Appendix, Fig. S1.
The results confirm that there are a comparable number of neg-
ative ties between and within the communities, in keeping with
previous findings suggesting that in order to dislike someone, one
first needs to know them (“familiarity breeds contempt”) (3).

Next, our analysis centers on defining the “mobility” of the
nodes. We measure the change in geodesic distance of the nodes
(computed solely through positive ties) from other nodes in their
network community, across waves. Using a regression model, we
evaluate how the nodes with relatively more negative ties “move”
within a network over time relative to their initial communities
composed of positive ties. And we analyze both inbound and
outbound negative ties.

Our analysis involves 16, 017 individuals shared between
the two waves of data (the individuals missing at Wave 2
in our analysis appear to be missing at random with respect
to observable topological features and demographic variables;

SI Appendix, Fig. S4). Using multilevel regression analysis (26)
(Materials and Methods), we explore the associations between the
negative in-degree and out-degree of nodes in Wave 1 and the
change in their proximity to their neighbors from Wave 1 at
Wave 2.

The multilevel regression model considered in our analysis
can be summarized as follows: d̄ij ∼ Xij� + uj[i] + �i and
uj[i] ∼ N (0, �2

j ), where d̄ij is the average geodesic distance of
node i in village j from the W1’s within-community neighbors
(in the positive network, as usual) at Wave 2. In order to ensure
comparability, the distances have been adjusted by normalizing
them according to the diameter of the network (the largest
geodesic distance between any pair of nodes in that network).
The matrix Xij denotes all characteristics of individual i at
village j, including individual i’s age, education, gender, religious
affiliation, relationship status (ego features); as well as the average
age and educational level of neighbors of individual i, and the
distributions of gender, religious affiliation, and relationship
status for these individuals who are connected to individual i (alter
features). Also, j[i] denotes village j that includes individual i.
Since the nodes i were at a minimum geodesic distance from
their neighbors (distance 1) at Wave 1, it is clear that the distance
will necessarily increase at Wave 2.

We find that, over time, the average geodesic distance (as usual,
measured solely with positive ties) to their Wave 1 neighbors
increases substantially for nodes with higher negative outbound
ties, compared to those with fewer negative outbound ties
(Fig. 2A; see Fig. 2B for an illustration; see also SI Appendix, Fig.
S2A and Table S2 for more details). These results are obtained
whether the negative ties are assessed as within or between
communities. The relationship of this particular effect with the
“movement” of nodes is somewhat stronger than the impact of
positive ties between different communities (SI Appendix, Fig.
S2 B, Top). The observed contrast in the effects emphasizes the
criticality of negative ties in communication with communities
beyond one’s own.

Nodes with higher levels of within-community “inbound”
negative ties at Wave 1 do not move significantly further away
compared to those with fewer negative inbound ties. This could
be due to the fact that egos may not even be aware of the
presence of these inbound ties. However, this effect is larger (and
statistically significant) when assessing the geodesic distance in
directed networks (SI Appendix, Fig. S3). Furthermore, nodes
that receive a high number of negative ties from external
communities exhibit (on average) less mobility than those with
a lower number of such connections (Fig. 2A and SI Appendix,
Figs. S2 and S3).

Network Topology. Given two extreme mechanisms to create
two counterfactual worlds—(1) local familiarity (each node is
connected to k nearest geographic, i.e., spatial, neighbors), or (2)
random familiarity (each node is connected to k random
nodes)—we would end up with two extreme worlds of a (k-
regular) ring lattice versus an Erdős-Rényi (k-regular) random
graph. In a local world with only positive relationships (attractive
forces), the nature and extent of the apparent randomness is
harder to explain, but it could, in principle, emerge as a result
of repulsive forces. In examining real-world social networks,
researchers have identified a variety of characteristics, includ-
ing two key phenomena that distinguish them from random
networks: a higher clustering coefficient and a shorter average
path length (27). The former characteristic pertains to positive
social connections (4), while the latter characteristic bears an
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A B

C D

Fig. 1. (A and B) Two of the village networks in Honduras at Wave 1 (giant component). Positive ties are highlighted by gray edges and negative ties by red
edges. Communities are estimated using MDL (DC-SBM) as indicated by the shape and color of the nodes. The likelihood of interactions within a community g
can be computed as pwithin = Ewithin/(ng(ng − 1)/2), where Ewithin represents the number of edges within the community, and ng represents the number of
nodes in that community. The probability of interactions between two distinct communities gi and gj , can be computed as pbetween = Ebetween/(ngi ngj ), where
Ebetween is the number of edges between two communities. (C and D) The plots depict the boxplots of the empirical distribution of negative (C) and positive
(D) interactions within and between communities. The orange diamond represents the median of each probability distribution. As expected, the probability
of positive ties within communities is significantly larger than the probability of positive ties between communities. However, the probability of negative ties
between and within communities is comparable (no significant difference).

ambiguous nature and could reflect a repulsive force. Hence, next,
we investigate the extent to which negative ties might account
for the observed shorter average path length.

In order to investigate how antagonistic ties change along
with positive ties in a network, we study several underlying
(node-specific) topological features, formed solely by positive ties,
including: 1) the average geodesic distance from all other nodes
in the giant component of the network; 2) the average geodesic

distance of a node’s neighbors from all other nodes in the giant
component of the network; 3) the local clustering coefficient; and
4) the betweenness centrality. [SI Appendix, section 3, for three
more topological features: 5) the average geodesic distance of a
node’s neighbors from all other nodes in the giant component
of the network when the node itself is removed; 6) the increase
in the average geodesic distance of the neighbors from all other
nodes in the giant component of the network after the node’s
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A

B

Fig. 2. (A) The relationship of negative ties (inbound and outbound) with the “mobility” of nodes (i.e., the change in the geodesic distance of a node to other
nodes in its network community across waves, with respect to the W1’s within-community neighbors). As expected, a greater number of negative outbound
ties within a community will result in a greater geodesic distance from an ego’s W1 neighbors at Wave 2. Conversely, the presence of negative inbound ties
from outside the community can have the opposite effect. The color blue denotes a negative effect, red signifies a positive effect, and gray represents a
statistically insignificant effect. The communities are inferred using MDL (DC-SBM). (B) Visualization of the effect of negative ties on mobility. We chose two
nodes—represented by two equilateral triangles on both panels—as an illustration. One of these nodes has the negative degree 3 at Wave 1 and its perimeter
is colored dark violet, while the other has the negative degree 0 at Wave 1 and its perimeter is colored dark green. Squares represent the W1 neighbors of the
node with the larger negative degree with a light violet perimeter color, while diamonds represent the W1 neighbors of the node with the 0 negative degree
with a light green perimeter color. In Wave 2, we only include the neighbors that are present in our data. It is clear that the neighbors of the node with the
higher negative degree (violet squares) are more dispersed in Wave 2 than the neighbors of the node with the lower negative degree (green diamonds). This
diagram is a simple representation of one of the various patterns that can be observed in the data. The interior colors of the nodes represent community
membership computed at each wave.

removal; and 7) the average distance from all other nodes across
all simple paths of length less than 5 (a simple path is a path with
no repeating vertices)].

To compute the association of antagonistic ties with these
(positive-world) topological features, we regress these features,
measured at the ego level, on the number of antagonistic ties while
controlling for covariates such as the size of the network, gender,
age, educational level, relationship status, and positive degree. At
each village, we normalize all (positive-world) topological features
except for the clustering coefficient (SI Appendix, section 3). We
consider the individual-level fixed effects and village-level random
effects using multilevel linear modeling (Fig. 3A and SI Appendix,
Figs. S5 and S6 and Tables S4 and S5). The results indicate
that the location of nodes having more negative ties is at the
periphery of the communities (at “bridge” locations), and also
in regions where we observe smaller clustering coefficients, larger

betweenness centralities, and smaller average distances relative to
other nodes in the networks (Fig. 3A).

In order to gain a deeper understanding of this phenomenon,
and the topological location of the nodes with more negative
ties, we identified the most central direct (positive) neighbor of
each node (i.e., one hop away), measured by the eigenvector
centrality of the nodes (in the network of just positive ties).
Then, we calculated the likelihood of accessing this node
through intermediary nodes (common positive neighbors). The
probability of reaching the most important positive neighbor,
denoted as k, via common neighbors j between i and k can be
expressed as pi→j→k = CNik/d(+)

i −1, where CNik is the number
of common positive neighbors between i and k and d (+)

i is
the positive degree of the original node i. Nodes with higher
negative degree tend to have their most significant positive
neighbor located outside of their respective community more

4 of 10 https://doi.org/10.1073/pnas.2401257121 pnas.org
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A

B

Fig. 3. The relationship of the number of negative ties (undirected, inbound, and outbound) with four topological characteristics: 1) average geodesic distance
from all other nodes in the giant component of the network; 2) average geodesic distance of a node’s neighbors from all other nodes in the giant component of
the network; 3) local clustering coefficient; and 4) betweenness centrality. (A) The predictions estimating the average marginal effect for the number of negative
ties. As indicated, nodes that have more negative ties are situated on the outskirts of the communities, acting as bridges. These nodes show smaller clustering
coefficients, larger betweenness centralities, and smaller average geodesic distances to other nodes in the network. Furthermore, nodes with higher negative
connections have neighboring nodes that exhibit a smaller geodesic distance from other nodes in the network, on average. This indicates that the neighbors
of nodes with higher negative degrees are more globally dispersed compared to nodes with lower negative degrees that are more locally dispersed. (B) The
probability of accessing the most central neighbor (with the highest eigenvector centrality) for each node according to the number of negative ties associated
with that node (limited to the paths of length 2, i.e., through the common neighbors). The probability that a node will access the most important neighbor
outside of its community increases as its negative ties increase, whereas the probability of a node accessing the most important neighbor inside the community
decreases as its negative ties increase. As the number of data points decreases from Left to Right, the width of the CIs increases, reflecting the greater SD. In
order to determine the communities in these analyses, MDL (DC-SBM) is used.
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frequently when compared to nodes with lower negative degree
(see Fig. 3B for the MDL communities and SI Appendix, Fig.
S7 for the modularity communities). In contrast, nodes with a
lower negative degree typically have their most significant positive
neighbor located within their community.

We also examine the relationship of negative ties with node
neighborhood distances, defined solely based on the positive
world, in order to understand better the association between
negative ties with positive-world topological changes (see Fig. 3A,
second row). On average, the distances between a node’s
neighbors and all other nodes decrease slightly as the negative
degree of the node increases. This indicates that the neighbors
of the nodes with more negative ties are more globally dispersed
compared to nodes with fewer negative ties, which are more
locally dispersed.

To explore one particular kind of heterogeneity, we also
include the associations between triangle motifs (SI Appendix,
Fig. S8) and the node’s topological characteristics (formed solely
by positive ties). To not lose statistical power, we considered
only triangles formed by undirected links, which are a total of
six new parameters (SI Appendix, section 3.A). The relationship
of the number of negative ties and triangle motifs with all the
topological characteristics is provided in SI Appendix, Figs. S9 and
S10 (SI Appendix, Tables S6 and S7). Previously, we observed
a correlation between the number of negative connections of
a node in a network and its topological location, such as its
proximity to bridges. From the results of an analysis of triangle
motifs, we learn that this correlation can be partly attributed to a
number of heterogeneities stemming from higher-order motifs
that characterize such nodes and can be explained by social
theories such as balance theory. For example, we observe that
the nodes with more negative ties still exhibit smaller clustering
coefficients, or nodes with more motifs in the form of n-p-nap (a
triangle with a negative and a positive adjacent edge to the node
and a positive nonadjacent edge) have smaller average geodesic
distance to other nodes in the network.

Finally, to test the hypothesis that negative ties might also
contribute to the splitting apart of networks, we model the
likelihood of positive within-community interactions to under-
stand how it changes with the probability of within/between-
community negative ties and with the probability of between-
community positive ties (SI Appendix, Fig. S11 and Table S8).
The probability of positive ties within a community decreases
with the probability of negative ties within the same community.
However, the probability of positive ties within a community
increases with (both) the probability of positive and negative
between-community interactions. These findings indicate that
there is a negative correlation between the number of negative
connections within a community and the number of positive
interactions. Possibly, such an effect could eventually lead to
the fracturing of the community, resulting in the formation of
multiple groups. However, studying this phenomenon in greater
detail requires data with higher time resolution.

Relationship of Antagonistic Ties with Potential Propagations
in Networks. Next, we generate synthetic data using SI (and SIS;
seeMaterials andMethods and SI Appendix, section 4) models (28)
to investigate the potential relationship of negative ties with
network dynamics. We create data using various parameters
that encompass a range of phenomena. These phenomena
may include the dissemination of information, the spread of
behavior, or the transmission of pathogens within a population
of interconnected individuals. In order to achieve a high level

of realism in our simulations, we use data based on the actual
networks present in the villages. The SI (and SIS; SI Appendix)
algorithms generate the data by treating (infecting) one node
10,000 times and observing how often any other nodes are
“infected” over 30 iterations (through the positive world). By
averaging the fraction of infections among all other nodes, and
using a multilevel model, we can infer the capacity (vulnerability)
of each node to propagate (or receive) a spreading phenomenon
(such as an idea or a germ) (29).

Results for a variety of different parameters for the SI model
are shown in Fig. 4 (see SI Appendix, Tables S9–S12 for more
details on SI model, and SI Appendix, Fig. S12 and Tables S13–
S16 for the SIS model). Our findings indicate that the presence
of negative ties (whether inbound or outbound, or ignoring
direction) of a node enhances the diffusion emanating from
the node, which is consistent with our previous observations
on the association between negative ties and the positive-world
topological characteristics of a network. Specifically, negative ties
have a tendency to isolate the nodes with more negative ties within
their network communities, pushing them toward the periphery
of the community. This results in a shorter average geodesic
distance between these nodes and the rest of the population,
impacting their ability to diffuse contagious phenomena. In
addition, this is amplified by the earlier observation that the
higher the negative degree of the nodes, the more likely they
are to be connected to the most central nodes outside of the
community (Fig. 3B).

There is a positive correlation between positive and negative
degree in most of the village networks (Pearson’s correlation =
0.18, P < 10−16). This means that individuals who have a
large social circle also tend to have more antagonistic ties. One
may therefore ask whether the relationships observed are simply

Fig. 4. The CIs of the relationship of the number of negative ties (undirected,
inbound, and outbound) with information diffusion and pathogen propaga-
tion using the SI model. The presence of negative ties at a node is associated
with an augmentation of the process of diffusion emanating from that node,
particularly during intermediate iterations. Following multiple iterations in
the SI model, the infection eventually reaches a saturation point, which
subsequently causes the impact of negative ties to disappear.
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a by-product of this correlation. Even though we account for
these correlations in all our models, we conducted additional
analysis to evaluate the robustness of our findings for the analyses
depicted in Fig. 4. By using a null model, we can maintain the
correlation while eliminating the impact of the relative location of
positive and negative degree. To maintain the positive correlation
between positive and negative degree, we rearrange the negative
degrees of nodes with the same positive degree. However, this
results in a change of the position of the negative degrees in
nodes with the same positive degree. That is, in order to keep
the correlation fixed, we have to shuffle the negative degrees
over the nodes with the same positive degree. The null models
we presented do not exhibit the same outcomes, indicating that
the observed effects cannot be attributed to positive correlations
(SI Appendix, Fig. S13). (The corresponding results for the null
model of the SIS model are provided in SI Appendix, Fig. S14).

We can confirm the accuracy of these simulations by observing
a real-life scenario. Our data come from a study aimed at measur-
ing the dissemination of knowledge, attitudes, and practices from
randomly targeted households to nontargeted households as part
of a randomized controlled trial (RCT) of various social network
targeting algorithms (21, 22). Here, we analyze the potential
relationship of negative interactions with this diffusion for a
particular aspect of the intervention involving the provision of
wholly novel information to certain (randomly selected) residents
of the villages.

Community health workers had discussions with families
about health, and this involved teaching randomly chosen subsets
of villagers previously unheard riddles. We analyzed the answers
to two riddles to observe how negative relationships are associated
with the spread of this exogenously introduced and novel infor-
mation. We use multilevel logistic regression modeling to deter-
mine the association between negative connections and the an-
swers, while also taking into account positive degree, age, gender,
education, marital status, and religion (Materials and Methods).

Our findings, shown in Fig. 5, indicate that the number
of negative ties of a node (whether untargeted or targeted)

Fig. 5. The relationship of the number of negative ties (undirected edges,
inbound, and outbound) with information diffusion. Our analysis involved the
evaluation of two logistic regression models. These models aimed to quantify
the correlation between the log odds ratio of correct responses to each of
two riddles and specific network characteristics and demographic variables.
The first model (Left) examined the influence of negative and positive degree
after controlling for other covariates. The second model (Right) extended this
examination to include negative in-degree and negative out-degree. Negative
ties can have a similar effect as positive ties in terms of increasing the
likelihood of providing correct answers to riddles. In other words, overall,
negative ties appear to enhance the diffusion of information in a network in
a manner that is similar to positive ties. The first riddle (riddle 1) asks, “Dry,
dry without a fajero, it falls off quicker, you will see it. What is it?” (umbilical
cord), and the second (riddle 2) states, “It seems like it is for the roof, but it’s
not—it’s for diarrhea, you tell me, what is it?” (zinc).

has the potential to facilitate accurate responses to riddles and
enhance the diffusion of information to the node, akin to positive
connections (see SI Appendix, Table S17 for the effects and CIs
for all the covariates). Furthermore, our results suggest that such
benefits may extend even to those who were initially uninformed
(SI Appendix, Fig. S15 and Table S18) (i.e., a person not given
the riddle information).

Antagonistic Ties and Idea Polarization. Next, we take advantage
of empirical data regarding different beliefs held by individuals.
Our analysis focuses on gender-related norms pertaining to how
women are treated (such as “In your opinion, in any family, who
should decide how the husband’s earnings are spent?” “In your
opinion, is a husband/companion justified in hitting or beating
his wife/companion if she neglects the children?” and “Should the
parents of a teenage girl decide if she can join with a partner?”).

Considering how negative ties are distributed in a network
and how they may influence the network structure, we can
formulate hypotheses regarding the potential effect of negative
ties within communities on polarization. As mentioned earlier,
there were many negative connections within the communities.
These connections position the nodes with greater negative
degree near the bridges (closer to the rest of the network), possibly
contributing to the widespread dissemination of information
within the system. We evaluated how these information catalysts
(the nodes with more negative ties) potentially contribute to the
mitigation of the polarization of beliefs within each village.

We perform an analysis to determine the relationship of the
number of negative ties with the diversity of beliefs within each
community. After using MDL to infer communities within
each village, we compute the diversity of beliefs within each
community in each village using Shannon entropy (30). We
consider 36 different beliefs gathered from all participants in
Wave 1 (SI Appendix, Table S19). Using multilevel regression,
we can model these diversities and compute the relationship of
the number of negative ties inside each community (normalized
using the number of nodes inside the community) with the
community-level diversities [see SI Appendix, Tables S20–S27
(community level)]. We adjust for other variables, including the
number of negative ties between the communities, the number
of positive ties within and between the communities, the SDs of
age and education inside these communities, and the entropies
of gender and religion in these communities.

The results for the relationship of the normalized number
of negative ties within the communities for these beliefs are
provided in SI Appendix, Fig. S16 [see SI Appendix, section 5
and Tables S20–S27 for more details, SI Appendix, Fig. S17
for ego network results (individual level; see also Materials and
Methods, Idea Polarization), and the corresponding individual
level SI Appendix, Tables S28–S35]. The results reveal that
negative connections within a community are associated with a
greater diversity of beliefs, and thus a decrease in polarization. The
analysis conducted on MDL communities showed significant
results in 26 out of 36 beliefs (this seems to apply especially to
controversial social norms or behaviors related to gender roles
and domestic violence). In other words, the presence of negative
connections within a community may promote a wider range of
beliefs and diminish structural polarization on more controversial
topics.

Choosing Seeds for Diffusion. Finally, it is noteworthy that the
capacity for information diffusion between two nodes can vary,
even if they have the same number of positive ties, based on the
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discrepancy in the number of negative ties between them. Using
the data generated earlier, i.e., by “infecting” a node 10,000 times,
we quantify how often other nodes become infected over a period
of 30 iterations. We compare two strategies: choosing a node
uniformly among the nodes with the same positive degree or with
probability proportionate to its negative degree. The data suggests
that selecting a node solely based on its positive degree may
not yield optimal results in terms of disseminating information.
Instead, it appears that a more effective approach would involve
selecting nodes based on both positive and negative degree. On
average, a larger negative degree significantly promotes the spread
of information among nodes of the same positive degree (see SI
Appendix, section 6 and Figs. S18 and S19, for selection based on
negative degree and negative eigenvector centrality, respectively).

Discussion

We examined positive and negative social interactions in 24,770
and 22,513 people in two consecutive waves in 176 isolated
Honduras village social networks to address the potential social
role of negative ties. Antagonistic connections are related to
network structure and dynamics. The smaller average distance
of nodes with a larger negative degree from the rest of a network
is reminiscent of random wiring in small-world phenomena (27).
That is, negative connections may play a role in fostering
pseudorandom wiring with distant components in a network.
Relatedly, the nodes with greater negative degree tend to be
located near network bridges, where the average distance to
the rest of the network is shorter, the betweenness centrality
is higher, and the clustering coefficient is lower. Additionally, the
neighborhood of nodes with relatively more negative ties exhibits
a greater degree of global dispersion in comparison to nodes with
lower negative ties.

While there are network measures that compute the centrality
of the nodes in information diffusion and other dynamics while
taking into account community structure (31, 32), we employed
community-agnostic topological measures to demonstrate that
our findings are not reliant on any specific community structure.
The reason is that different algorithms for community detection
can infer different community structures, and there is no
definitive ground truth on community structure for real-world
networks (24).

These topological factors provide special opportunities for
nodes with negative ties in applications like information dif-
fusion. On the one hand, antagonistic connections within a
community can push individuals toward the fringes of their
group, which can ultimately broaden their connections beyond it
and aid the dissemination of information between groups. This
can also foster diversity of thought and reduce polarization. On
the other hand, an excessive amount of negative ties is likely
associated with the presence of multiple communities within
a larger population, which may lead to divisions within it. As
an example, the growing polarization in the U.S. Congress is not
only due to a lack of positive relations between groups but also the
negative relations between them (33). Comprehensively studying
this would require data with a much higher time resolution and
is an area for future research.

Since the presence of negative connections in a network is
crucial for determining the positioning of the nodes, their positive
connections, and their possible role in propagation dynamics,
it may be important to take into account the negative ties
for downstream tasks such as influence maximization (34) or
proposing targeting strategies (4). Negative ties may also affect

community-wide social contagions that interventionists may wish
to foster.

It is worth highlighting that investigating face-to-face antag-
onistic ties is more challenging in comparison to positive ties in
part because people may be less aware of who dislikes them than
who likes them. Moreover, there may also be measurement errors
that can occur due to the use of various name generators to survey
negative ties, as well as individuals practicing self-censorship to
avoid embarrassment, reduce the risk of social norm violation,
and protect their privacy (35, 36). Furthermore, the “effects”
discussed here should be apprehended as associations rather than
causal relationships. To better understand the causal relationship,
we would require data with a more detailed time resolution or a
randomized study. This could be a promising direction for future
work (for instance, using online experiments).

We considered the spread of social norms through an or-
dinary kind of contagion process. That is, we focused on the
relationship of negative ties with network measures and synthetic
dynamics, such as information diffusion in a network, which
we also validated using real data (which supported the simplistic
assumptions). Nevertheless, it is plausible that social norms not
only spread through an ordinary contagion process but also
through intentional behaviors, such as peer sanctioning (37),
or more complex means; future studies could address the role of
intentional behaviors in the process of social norm diffusion.

Just as friendship ties can impose costs (ranging from the
demands our friends place on us to the risk of infection that
social connections entail) (38), antagonistic ties can offer benefits
(ranging from enhancing our access to novel information or
reducing our membership in overly siloed groups). There is a
distinction, of course, between disliking others or being disliked
by them. We have observed that explicit patterns are more
discernible in the modeling of disliking others compared to
being disliked by them. This is likely primarily because the
latter is more likely to remain concealed from the individual.
Nevertheless, at the population level, the existence of a capacity
for such antagonism has important implications for the overall
structure and function of human groups.

Materials and Methods

Our data come from a sociocentric network study of 24,770 people aged 11 to
93 y (with a mean age of 33) at Wave 1 and 22,513 people aged 14 to 95 y (with
a mean age of 37) at Wave 2 [labeled as “Wave 3” in the original study (21)]
in 176 geographically isolated villages in western Honduras (21). This research
was approved by the Yale IRB and by the Honduran Ministry of Health (Protocol
# 1506016012), and all participants provided informed consent upon enrolling
in the study.

Using this empirical data, we construct 176 binary-directed signed networks
(with no multiedges or self-loops). We use three name generators to determine
(overlapping) positive ties (“Who do you spend your free time with?” “Who is
your closest friend?” and “Who do you discuss personal matters with?”) and
one specific name generator for negative ties (“Who are the people with whom
you do not get along well?”). We consider the weakly connected component
of directed networks and the giant component of undirected networks. These
components include 99% and 98% of the nodes (on average) at Wave 1 and
Wave 2, respectively.

There are 101,997 positive directed interactions—a single positive interaction
between ego and alter may represent the result of several positive interactions—
compared to 15,776 negative interactions in the 176 villages. These ties include
101,978 positive directed interactions and 15,717 negative interactions in the
176 weakly connected components of these villages (SI Appendix, Table S1).

Negative ties have a lower reciprocity than positive relationships. There can
be a lack of information flow due to the avoidance of any interaction with the
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receiver of the antagonistic tie by the sender, which may result in the receiver
being unaware of the tie and thus unable to “reciprocate” it (39). In practice, the
amount of reciprocity may depend on the question, and the study of undirected
networks in Honduras dataset makes sense given that negative ties result from
asking “Who are the people with whom you do not get along well?,” which
constitutes a symmetric relationship.

SI and SIS Model and Propagation in Networks. SI and SIS are two classic
compartmental models used in some analyses here to model pathogen
and information diffusion (40, 41). The model tracks both the number of
“susceptibles” and the number of “infecteds” using simple differential equations.
Here, we use the expanded version of the SI and SIS models across a
network (28). Through these models, an “infection” is transmitted across an
infected-susceptible edge with a probability � , per iteration. Therefore, any
susceptible node ibecomes infected with the probability of 1−(1−�)|INi | ≈

1 − e−�|INi |, where |INi
| is the number of infected neighbors of node i.

Additionally, in the SIS model, any infected node i is recovered with a constant
probability 
 at each iteration, resulting in a geometrically distributed infectious
period.

The SI and SIS algorithms generate the data by treating (infecting) one node
10,000 times and observing how often any other nodes are “infected” over 30
iterations. By averaging the fraction of infections among all other nodes, we
can determine which node has a greater capacity (vulnerability) to propagate
(receive) a spreading phenomenon—such as an idea or a germ. Then, in order
to determine the impact of negative ties on diffusion, multilevel modeling is
used. This involves taking into account the random effects at the village level
and making adjustments for any potential confounding factors.

Multilevel Regression. We account for the fact that observations are nested
within groups when modeling the relationship between a dependent variable
and an independent variable using multilevel regression (26). We use this
approach in order to investigate the effect of negative ties on the structure of the
social networks, after controlling other factors. We evaluate how the number of
negative ties of a node is associated with its topological location in the positive
world. Similarly, we study how negative ties are associated with information
diffusion and polarization by computing the effect of the number of negative
ties with respect to each of these phenomena after controlling other important
factors.

We use multilevel regression to model the relationship of negative ties with
various topological features, the change in the geodesic location of nodes across
different waves, the spread of information (including information introduced
exogenously as part of the RCT) or germs, and idea polarization. For each of
these cases, we had a quantifiable dependent variable y, which we aimed to
model using other covariates. These covariates include age, gender, educational
background, relationship status, and topological features like negative tie
measures. When evaluating a model at either the individual or community
level, certain quantities are evaluated differently depending on the context. For
example, when considering the individual level, the negative ties are taken
into account, whereas at the community level, the proportion or probability
of negative ties is given due consideration. A multilevel regression model
at the individual level may be summarized as yij ∼ Xij� + �i + uj[i] and

uj[i] ∼ N (0, �2
j ) to compute the negative ties’ effects. The Xij represents all of

the characteristics of the individual i at village j, such as its number of negative

and positive ties, and the individual’s age, gender, educational background,
and relationship status (i.e., a binary variable of being in a marital relationship).
Also, j[i] denotes village j that includes individual i. For the community level, we
have ygj ∼ Xgj� + uj[g] + �g and uj[g] ∼ N (0, �2

j ), where Xgj represents
all of the characteristics of the community g in village j (see next subsection for
an example).

In our analysis of the effects of negative ties on information diffusion,
we examined the relationship between the number of negative ties and the
probability of correctly answering exogenously introduced novel riddles. Our
aim is to determine how this relationship can impact information diffusion. To
this end, we use a multilevel logistic regression summarized as logit(pijk) ∼

Xijk� + �i + uj[i] + vk[j] and uj[i] ∼ N (0, �2
j ) and vk[j] ∼ N (0, �2

k ) to
compute the negative ties’ effects, where the log odds ratio has been regressed
on both the demographic variables and the topological features of the network.
Our model accounts for the hierarchical structure of the data, with individuals
hierarchicallynested withinhouseholds (sincetheindividuals insideahousehold
are targeted together) and households nested within villages. This approach
provides us with the ability to consider the potential random effects that may
exist at both the household and village levels, thus reflecting the intrahousehold
and intravillage correlations.

Idea Polarization. In order to quantify idea polarization, we measure the
diversity of beliefs at the level of the communities (community level) and of
the ego networks (individual level). We examine the polarization using the
gender norm questions (SI Appendix, Table S19) from surveys collected in the
villages (21). We quantify the diversity of beliefs within each community or in
the neighborhood of each individual using Shannon entropy (30). This measure
helps us assess the diversity of beliefs for each of the questions, which is inversely
related to polarization.

For computing these effects, we use a multilevel regression model
summarized as polarizationgj ∼ Xgj� + uj[g] + �g and uj[g] ∼ N (0, �2

j ).
The Xgj represents the characteristics of community g within village j, including
its number of positive and negative ties within that community, its number of
positive and negative edges inward and outward of the community, its age and
religion entropies, and its variance in age and educational background within
the community.

Data, Materials, and Software Availability. The data used in this work are
not publicly available given mandated commitments to the research participants
and the sensitive nature of the health and social data in these small communities
that could potentially allow decryption or individual identification, but data may
be available from the senior author on reasonable request and subject to a
DUA and establishing a secure server account. Illustrative data from this cohort
have also previously been released. The network data for a sample of 22 signed
villages are provided at https://github.com/Aghasemian/EnmityParadox (4).
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