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Simple autonomous agents can enhance
creative semantic discovery by
human groups

Atsushi Ueshima 1,2,3,4, Matthew I. Jones 1,2,5 & Nicholas A. Christakis 1,2,6

Innovation is challenging, and theory and experiments indicate that groups
may be better able to identify and preserve innovations than individuals. But
innovation within groups faces its own challenges, including groupthink and
truncated diffusion. We performed experiments involving a game in which
people search for ideas in various conditions: alone, in networked social
groups, or in networked groups featuring autonomous agents (bots). The
objective was to search a semantic space of 20,000 nouns with defined simi-
larities for an arbitrary noun with the highest point value. Participants
(N = 1875) were embedded in networks (n = 125) of 15 nodes to which we
sometimes added 2 bots. The bots had 3 possible strategies: they shared a
random noun generated by their immediate neighbors, or a nounmost similar
from among those identified, or a noun least similar. We first confirm that
groups are better able to explore a semantic space than isolated individuals.
Then we show that when bots that share the most similar noun operate in
groups facing a semantic space that is relatively easy to navigate, group per-
formance is superior. Simple autonomous agents with interpretable behavior
can affect the capacity for creative discovery of human groups.

The discovery of innovative ideas can enhance the immediate welfare
of a population and even modify the course of evolution1–3. However,
finding such valuable ideas often involves exploring a large pool of
possibilities – which can be a challenging process for both individuals
and groups. The primary roadblock to finding good ideas is normally
not that innovations are hard to evaluate, but that coming up with an
original, paradigm-shifting idea that pushes the boundary of the space
of available ideas is difficult. Ironically, this is a challenge that being in
groups can both mitigate and amplify. Moreover, since simple auton-
omous agents can alter group behavior in a variety of ways4–8, such
agents might also affect the creative capacity of groups.

For the emergence of collective intelligence, prior work has
highlighted the importance of both independence and inter-
dependence among group members9–13. The presence of too much
inter-dependence within a group can result in a quick convergence on

an inferior idea (e.g., groupthink14). Such social herding has been
shown to have negative effects on collective intelligence15,16. On the
other hand, if there is not a focused group whose members draw
inspiration from each other, the lack of inter-dependence can lead to
uncoordinated and inefficient exploration of ideas and a failure to
exploit any beneficial innovations once they are discovered.

Priorworkon social learningwithin humangroups has focused on
critical factors including, for example, network structure17–20, learning
strategy21–24, and group size25–27. However, prior experimental studies
of networked collective decision-making have generally neglected the
critical issue of relationships among candidate ideas – for instance,
semantic similarity between ideas in an idea space. In daily life, similar
ideas tend to have similar value and also tend to be easier to discover
via marginal improvements to existing ideas. Groups can follow a
strategy whereby members use the ideas proposed by their neighbors
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to help guide their next attempt. It is, therefore, important to under-
stand the strategies that groups can adopt in order to enhance col-
lective creativity in such a situation.

The interplaybetween the independenceand inter-dependence in
idea sharing can also inform the development of intervention strate-
gies. For instance, a group producing overly similar ideas couldbenefit
from an intervention that promotes independence in idea generation,
thus reducing idea similarity and facilitating the discovery of novel
ideas, while a group that is already effectively exploring solutions
might benefit from additional sharing of ideas to promote exploitation
of high-value regions of the semantic space.

Here, we first develop a word search game mimicking such chal-
lenges. Then, we test it in groups of isolated individuals and in groups
that can share information in a social network; and we show that social
information helps groups explore the idea space. Finally, we demon-
strate how the use of simple autonomous agents (bots) can affect
collective idea exploration. We test several different potential group-
level interventions involving such simple bots. We also explore the
impact of making the problem harder to solve by adding a variety of
decoys to the idea landscape.

Despite the ongoing transformation of social and computational
science research by large language models28, here we focus on simple
autonomous agents that workwith classic natural language processing
techniques and that are thus relatively transparent in nature4,29. Doing
so allows us to have full control over how our AI-bots intervene in
human groups; to obtain more interpretability in what the bots are
doing; and to focus on human creativity rather than AI capability
per se. Nevertheless, this methodology also sheds light on how more
complex forms of AI might shape the behavior of human groups.

In total, we show that adding simple bots to networked human
groups has a notable impact on the ability of groups to find rewarding
regions of semantic space, particularly when sharing similar ideas in
less challenging landscapes.

Results
Methodology summary
We use words (specifically, nouns) as an analogue for ideas. Both
words and ideas have semantic relationships determining how similar
onewordor idea is to another, and both require a level of originality to
come up with new and interesting examples. We performed experi-
ments where participants were asked to search for nouns from a set of
20,000 frequently used English nouns to which we assigned arbitrary
values (see Supplementary Methods for details). To incorporate the
real-world aspect of similar ideas having comparable value, we used a

simple and well understood natural language processing resource
known as word2vec30,31 which is an embedding of words into a 300-
dimensional space where a word’s semantic meaning is conveyed by
the position of its vector representation32. Semantically similar words
such as “dog” and “cat” will have vectors with high cosine similarity,
whereas dissimilar words such as “dog” and “desk”will not. Using these
vectors, we are able to assign comparable point values to semantically
similar nouns.

Participants were incentivized to find a single target noun which
was assigned to have the highest point value of 20,000. Other nouns
were then assigned points relative to their closeness to the target. For
instance, if “dog” was selected as the target with a point value of
20,000, “cat”would also receive a high point value. This task replicates
the many human decision-making endeavors where the options are
not easily enumerable but arenevertheless related and easily evaluable
(e.g., studio executives predicting how the public will react to movies,
curriculum committees deciding which new classes to offer, families
deciding on the best vacation, etc.). We chose a set of 18 target nouns
that were spread out in the word2vec space and were roughly equally
obscure (see Supplementary Methods for details), as follows: “recce”,
“cartography”, “investiture”, “comedown”, “hesitance”, “decile”,
“shoehorn”, “edutainment”, “narrowness”, “activewear”, “epee”, “doy-
enne”, “actuation”, “sarcoma”, “braggadocio”, “jowl”, “fratricide”, and
“translocation.” In our experiments, individuals worked together to
find these targets. See Fig. 1a, b for two examples of trajectories
through the noun space when people were searching for “fratricide.”

We report results for 1875 participants (recruited through Ama-
zon Mechanical Turk) who were placed into 125 groups (see Supple-
mentary Methods regarding additional participants in one of the
experimental arms). Each trial involved 15 participants placed within a
networked group playing five word-search games. In each game, the
participants are embedded in a social network with links formed fol-
lowing the Erdos-Rényi model5,33. Each game lasted 25 rounds, and, in
each round, participants were asked to submit a noun. Following each
round, the point value of the noun they chosewasdisplayed (assuming
the noun was included in the list of the 20,000 nouns). Additionally,
participants were provided with the most recent responses (nouns)
and respective point values from their network neighbors with whom
they were in direct connection (i.e., social information). To reduce
mental load, participants were also shown the highest-scoring noun
they had seen so far, alongwith its point value. Each groupof 15 people
played five sequential conditions involving bots, as discussed below
(i.e., five games of 25 rounds), with different target nouns carrying the
highest point values in each condition. To avoid order effects, the

Fig. 1 | Example trajectories of participants. a An example answer trajectory of a
participant who played very well (in the no-bot group condition). The landscape
was the no-decoy condition, and the target noun was “fratricide”. b An example
answer trajectory of a participant who did not play very well (in the solo condition)

with the same landscape condition and target noun (two nouns that were not in the
list of 20,000 nouns are not shown, from rounds 8 and 23). In panels a and b, best-
fit lines are included in red for illustrative purposes.
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order of bot treatments was delivered based on a fractional factorial
design (see Supplementary Methods for details).

We used autonomous agents (bots) to both explore what sort of
strategies humans might naturally use that could affect the perfor-
mance of their groups, and also to assess possible strategies that bots
could themselves adopt to enhance the creativity of human groups.
Hence, two bots were sometimes added to the human networks,
resulting in a 17-node hybrid system of humans and bots4 (Fig. 2a and
Supplementary Fig. 1). In some treatment conditions, these bots used
the word2vec database to assess how similar the nouns the humans
offered were to each other. The participants in the network were not
informed if their neighbor was a human or bot, and the social infor-
mation was shown to each participant without revealing which of their
neighbors offered which noun (Table 1).

There were three types of bots: the least-similar bot, the most-
similar bot, and the random bot. The least-similar bot used semantic
similarities to choose the word that was least similar among all its
neighbors’ guesses on themost recent round. For instance, if the bot’s
neighbors’ answers during a round were “dog,” “cat,” “rat,” and “desk,”
as shown in Fig. 2a (where the bot is labeled 1), the least-similar bot
would select “desk” as the least-similar noun among its neighbors
(Table 2). After selecting “desk” as the least-similar noun, the botwould
send this word to the other bot (node labeled 2 in Fig. 2a) which could
share that word with its neighbors in that same round. In other words,
each bot had the ability to immediately propagate ideas received from
theother bot to other (distant) regions of the networked group. Notice
that each of the two bots in a network had only one candidate noun to
sharewith its ownneighbors—that is, the noun sent from theother bot.
As the names suggest, the most-similar bots chose the noun that was
most similar among all the guesses and the random bots chose ran-
domly from its neighbors’ responses. To be clear, themost-similar and
the least-similar bots did not use information regarding the target
noun to choose the noun to broadcast to another local region of the
network group. In other words, the most-similar and least-similar
nouns were determined independently from the target noun based
solely on human participants’ ideas (Table 2). Notably, the randombot
couldactwithout any information about thenoun similarities at all. For
the most frequently observed nouns offered by humans in the
experiment, see Supplementary Tables 2 and 3.

Rugged solution landscapes can add additional difficulty when
participants are searching for optimal solutions due the possibility of
getting stuck on a suboptimal local maximum4,11. To simulate this
challenge, we sometimes employed decoy nouns to potentially mis-
lead participants. The point values of nouns semantically similar to the

arbitrarily chosen decoy nouns were boosted (Fig. 2b; see Supple-
mentary Fig. 2 for details). Because the point value of the decoy noun
was kept lower than the target noun value, it functioned as a local
optimum in the semantic space.

We considered two parameters when implementing the decoy
nouns: (1) the point value of the decoy noun (i.e., the height of the
decoy peak), and (2) the number of surrounding nouns that were
boosted around the decoy noun (i.e., the width of the decoy peak). We
tested two variations of each parameter (tall and short, and wide and
narrow) for a total of five landscapes: (1) tall/wide, (2) tall/narrow, (3)
short/wide, (4) short/narrow, and (5) no decoy. The parameters were
chosen so that the tall/narrow and short/wide landscapes had the same
theoretical probability of misleading participants in the early stages of
the game (see Supplementary Methods and Supplementary Fig. 2 for
illustrations and details). Participants were not informed of the pre-
sence of the decoy nouns.

Each group participated in five games, including one for each bot
treatment: least-similar bot, most-similar bot, random bot, no bot, and
solo condition. In the no-bot condition, 15 participants played a game
without the two bots embedded in the network, where the edges
connecting the bots to the humans were removed. In the solo condi-
tion, participants played alone without any neighbors, where all the
edges in the network were removed. Each group experienced the five
games under the same type of decoy landscape, and each landscape
therefore contained 25 unique groups. Thus, the decoy landscapes
were between-participant treatments, while the bot conditions were
within-participant treatments.

Creative thinking in groups benefits from sharing similar ideas
We begin our investigation with the contrast between the solo and
group conditions. To measure group creativity, we take the average
cosine similarity to the target noun over all guesses by all participants
over all 25 rounds of each game. This value, which is typically small but

Fig. 2 | Illustration of the bot interventions and the semantic landscape. a An
example social network consisting of 15 human players (light blue and purple cir-
cles) and two bots (yellow squares). Edges connected to a bot are colored red. Only
the example nouns answered by some participants are shown. b A demonstration
of the boosting algorithm on a mesh grid of 10,000 points in two dimensions. The
black mesh shows the no-decoy landscape, where a target point is located at (0.2,
0.2) and rank is a monotone function of distance to the target. In landscapes with a
decoy, the values of points close to the decoy at (0.7, 0.7) were artificially boosted,
but the total rank sum of all 10,000 points was unchanged (see Supplementary
Fig. 2). Higher point values are associatedwith light colors, while lower point values
are associated with dark colors.

Table 1 | An example of the social information shown to a
participant located at the purple node in the least-similar bot
condition after the round depicted in Fig. 2aa

Player Latest answer Points

You car 5492

Neighbor rat 12,293

Neighbor rabbit 12,114

Neighbor sky 18,999

Neighbor desk 6709
aDuring the game, participants could see the information about the highest-point-value noun in a
game with the description such as “The highest-point-value noun answered by you or your
neighbors so far in this game: sky with 18,999 points.”

Table 2 | The calculation of pairwise cosine similarities of four
example nouns observed by bot #1, which were obtained
using word2veca

cat dog rat desk

cat 1 0.76 0.53 0.16

dog 0.76 1 0.44 0.12

rat 0.53 0.44 1 0.06

desk 0.16 0.12 0.06 1
aThe least ormost similar noun can bedeterminedby computing the averageof the values in the
rowsandchoosing thenounwith the smallest or largest values, respectively. In this example, the
least similar noun is desk. The cosine similarities with each of the other nouns are 0.16, 0.12, and
0.06. On the other hand, the most similar noun is cat. The cosine similarities with each of the
other nouns are 0.76, 0.53, and 0.16.
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positive, is the dependent variable in all analyses (unless otherwise
noted). Our results from a regression model using the no-bot condi-
tion as the reference variable show that working as a group adds a
significant benefit over members acting in isolation (βSolo = −0.70; 95%
highest density interval (HDI) [−1.10, −0.33]; see the no-decoy facet in
Fig. 3a), emphasizing the value of social learning in efficiently explor-
ing semantic space. Then, in general, we find that the addition of any
kind of bot (i.e., most-similar, least-similar, or random) did not yield
meaningful main effects in comparison to the no-bot group situation
(i.e., the red, blue, and gray lines are not statistically distinguishable
from the black lines in Fig. 3a, in the no-decoy condition).

Next, we investigated the interactions between bot conditions
and decoy landscapes with regressionmodels, using the bot condition
(reference variable: no bot), landscape type (reference variable: short/
wide), and their interactions as the key independent variables (Fig. 3b).
For groups with the most-similar bot and some of the landscapes, we
found a specific performance increase that cannot be explained by
either thebot type or the landscape alone (βMost:no decoy = 0.56; 95%HDI
[0.05, 1.07]; βMost:tall=narrow = 0.50; 95% HDI [0.00, 1.03]). Similar trends
were also shown in the short/narrow landscape (βMost:short=narrow = 0.44;
95%HDI [−0.08, 0.97]; 90%HDI [0.00, 0.87]). All the 90%HDIs of other
parameters included zero, demonstrating that none of the other
interaction effects were statistically meaningful. There was no main

effect of bot types (Fig. 3b), showing that the positive effect of the
most-similar bot was not observed in comparison to the no-bot con-
dition but was only seen as an interaction effect between bot function
and landscape type. Therefore, adding themost-similar bots in a social
network is most advantageous in easier landscapes with fewer artifi-
cially boosted nouns, specifically in the no-decoy and narrow
landscapes.

An additional analysis did not find statistically meaningful differ-
ences (at the 95% HDI criterion) in task performance between partici-
pants whowere directly connectedwith a bot and thosewhowere not,
in any of the bot treatments or landscapes (for detailed results, see
Supplementary Fig. 3), hinting that the effects of bots were not limited
to any subgroup of the network4.

To understand why the most-similar bot had a positive effect (in
certain landscapes), we assessed the quality of nouns shared by the
different types of bots (i.e., themost-similar, least-similar, and random
bots) in each game. Figure 4a illustrates that there was a sharing of
higher quality nouns that cannot be explained by the bot type and the
landscape alone for the most-similar bots employed with the easier
(no-decoy, short/narrow, and tall/narrow) landscapes, compared to
the least-similar bot (βLeast:no decoy = −0.85, 95% HDI [−1.42, −0.25];
βLeast:short=narrow = −0.81, 95% HDI [−1.45, −0.20]; βLeast:tall=narrow = −0.81,
95%HDI [−1.40, −0.20]; using the tall/wide landscape as the reference).

Fig. 3 | Themost-similar bot helpedgroups achieve better results in landscapes
with fewer artificially boosted nouns. a Mean cosine similarity between partici-
pants’ answer and the target noun across 25 rounds in 5 decoy landscapes. The
horizontal line indicates the mean cosine similarity between each of the 18 target
nouns and the 20,000 nouns, across conditions. It is apparent that the solo con-
dition (yellow) has theworst performance and the no-bot social condition (black) is
an improvement across all landscapes. The bot conditions involving the most-
similar bots (red) are helpful, especially so in the narrow landscapes. Error bars

indicate standard errors. b Posterior distributions of regression coefficients with
the computed highest density intervals. For the dependent variable of the regres-
sion analysis, we averaged the cosine similarity between answers and the target for
each game. The study incorporated 125 unique groups, each completing 5 games,
resulting in 625 data points. The regression model’s independent variables inclu-
ded fixed effects of bot conditions, landscape variables, and their interactions, with
the reference variables being the no-bot condition and short/wide landscape.
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Likewise, the most-similar bots meaningfully outperform the random
bots in the tall/narrow landscape (βRandom:tall=narrow = −0.85, 95% HDI
[−1.44, −0.23]). A similar trend was also observed in in the no-decoy
landscape (βRandom:no decoy = −0.47, 95% HDI [−1.04, 0.14]; 90% HDI
[−0.98, 0.01]). We did not observe statistically distinguishable main
effects of the bot types.

Although this evidence is indirect, these results suggest that the
most-similar bot may have been able to help participants generate
nouns that were similar to the target by propagating high-value nouns
throughout a network. Importantly, this was possible because nouns
relayed by the most-similar bot – i.e., the idea that was most similar
among the various ideas offered by its neighbors –were indeed similar
to the target noun, at least in the no-decoy and the two narrow land-
scapes. Humans seem to have some intrinsic ability to solve the game
on these easier landscapes, and the bots may amplify this ability by
leveraging the wisdom of crowds, essentially reducing noise.

Our data indicate that the addition of the most-similar bot helps
groups approach the target noun, but it is conceivable that the bot
could also lead groups towards the decoy noun by sharing nouns
whose point values have been artificially inflated due to proximity with
the target noun. To test this, we considered the similarity between the
nouns offered by participants and the decoy noun in all landscapes
(except the no-decoy landscape). As shown in Fig. 4b, there is no evi-
dence that the use of the most-similar bot increased the similarity
between participants’ answers and the decoy noun (for detailed
results, see Supplementary Fig. 4). We did not observe a meaningful
main effect of the bot types, suggesting that none of the bot types led
participants to thedecoywhen controlling for the landscape factor.On
the other hand, the same regressionmodel revealed interaction effects
between the bot conditions and the landscapes; in the tall/narrow
landscape, participants’ answers resembled the decoy nounmore with
the least-similar bot and the random bot, in comparison to when they
played a gamewith themost-similar bot (βLeast:tall=narrow = 0.67, 95%HDI
[0.05, 1.31]; βRandom:tall=narrow = 0.65, 95% HDI [0.02, 1.26]; with most-
similar bot and short/wide landscape used as reference variables).
Therefore, the actions of the most-similar bot, sharing similar ideas
from among the various ideas offered by its neighbors, are still effec-
tive at improving performance, even in the presence of local optima
within the semantic landscape.

Wider decoy peaks hindered the establishment of a semantic
alignment
So far, we have found that the most-similar bot was more useful in
narrow landscapes than in wide ones. This is part of a broader trend
(regardless of bot behaviors) that wide landscapes posed a greater
challenge for participants than narrow ones (Fig. 3a). Still, participants
were indeed capable of finding nouns similar to the target noun in the
wide landscapes. Themaximumsimilarities between thenouns and the
target nouns achieved in each game did not show any meaningful
difference across the landscapes, as seen in Supplementary Fig. 5.
However, participants were unable to take advantage of these occa-
sional discoveries to improve their collective guesses. We attribute
these findings to wider landscapes making it difficult for participants
to recognize rewarding nouns as forming a meaningful cluster. In the
wide landscapes, we artificially boosted the ranks of a large number of
nouns (12,000) around the decoy, disrupting the correlation between
semantic meaning and point value. As a result, it may have been more
challenging for participants to form an accurate understanding of the
fitness landscape. For example, under a coherent alignment between
noun meanings and point values, when two semantically separate
words like “chainsaw” and “grammar” have drastically different point
values, this is a clear signal for participants to either try nouns that are
tools or nouns related to language. However, if they both have high
value becauseone is near the target and the other is near the decoy, for
instance, it would be difficult for players to determine which area of
the semantic landscape to continue to explore.

Based on the preceding argument, we hypothesized that indivi-
dualsmight exhibit distinct behavior depending on the landscape they
faced. Specifically, we suspected that participants in narrower land-
scapes could establish cognitive alignment between point values and
semantic meanings associated with specific nouns, and that, after
receiving high point values in the previous round, participants would
tend to answer a noun that was semantically similar to their previously
observed noun. To test this possibility, we examined the correlation
betweenpoint values obtained in each round t and the cosine similarity
between nouns in rounds t and t + 1 (Fig. 5). We specified a regression
model with the main effects of the landscape width (wide, narrow, or
no-decoy landscape; with the narrow one as the reference category),
height (tall, short, or no-decoy landscape), and bot types. Tomake the

Fig. 4 | Impact of bot behavior and decoy landscape on similarity of answers to
the target nounand to the decoynoun. aCosine similarity between nouns shared
by bots and the target noun in each game. A total of 125 groups went through three
games under different bot conditions for a total of 375 data points. The regression
model’s independent variables included fixed effects for the three bot conditions
(random, least, most), the landscape variables, and their interactions, with the
reference variables being the most-similar bot condition and the tall/wide land-
scape. The solo and no-bot conditions were excluded because these conditions did
not have bots. We see that the most similar bot (red) helped participants identify
high-value nouns by propagating them through the network. b Cosine similarity
between nouns guessed by participants and the decoy noun. The data from the no-

decoy landscape was excluded, resulting in 500 data points. The regression mod-
el’s independent variables included fixed effects of bot conditions, landscape
variables, and their interactions, with the reference variables being themost-similar
bot condition and short/wide landscapes. The most-similar bot (red) did not pull
the group toward thedecoy local optimum in the sameway that itmoved the group
toward the globalmaximum at the target. The plots show summary statistics of the
raw data presented with box-and-whisker plots. The box represents the inter-
quartile range (IQR). The line within the box represents the median value. The
upper (lower) whisker extends from the hinge to the largest (smallest) value no
further than 1.5 * IQR from the hinge. Data outside the whiskers are plotted
individually.
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effect of the no-decoy landscape identifiable, we fixed the coefficient
of the no-decoy condition in the height variable to be a constant zero
and only estimate the no-decoy effect with the width variable. The
results show that, regardless of the landscape, participants in the solo
condition showed a lower correlation than those in the no-bot condi-
tion (βSolo = −0.33, 95% HDI [−0.52, −0.16]), meaning that social infor-
mation helps individuals build an accurate picture of the landscape
and to make better guesses. More interestingly (and confirming our
hypothesis), the model also revealed that participants in the narrower
landscapes had a higher correlation than those in thewider landscapes
(βWide = −0.34, 95% HDI [−0.62, −0.05]), in which players encountering
ahigh-value noun are unable (or unwilling) to exploit that high valueby
guessing other nearby nouns. No significant difference was observed
between the narrow landscapes and the no-decoy landscape
(βNo decoy = −0.06, 95%HDI [−0.45, 0.35]). See Supplementary Fig. 6 for
details.

These findings suggest that the relationship between semantic
meaning and point value was indeed less perceptible to participants in
the wider landscapes. It was not how high the decoy nouns were
boosted, but rather the number of artificially boosted nouns around
the decoy nouns that made a semantic space less navigable for parti-
cipants. The wide decoy peaks do not attract the participants toward
the localmaximum; instead, they appear to scramble theword ranks so
much that participants lose the ability to form a coherent (even if
implicit) image of the landscape in their minds. The point values may
seem indecipherable, leaving the participants struggling to decide
which region of semantic space to explore.

Solitary creativity is different than creativity in a group
To provide a deeper understanding of the mechanism underlying
group creativity, we also explored the relationship between creative
performance exhibited by individuals in a solitary context versus in a
group context. We analyzed whether the participants who performed
well in the solo condition also had successful individual performances
in the other groupwise conditions. As depicted in the results shown in
the top row of Supplementary Fig. 7a, the participants who could
answer nouns thatwere similar to the target noun in the solo condition
were also more likely to do so in the four social conditions, compared
to those whowere unable to provide good ideas. In other words, some
individuals are naturally better at coming up with new nouns closer to
a target. However, noticeably, this performance correlation was weak

(Pearson r =0.18 to 0.23), compared to the performance correlations
between social conditions (Pearson r =0.38 to 0.54). In other words,
success in the solo condition is a (relatively) poor indicator of indivi-
dual success in a group setting. Previous work has shown that collec-
tive intelligence can be a quality exhibited by a group, not always
reducible to the individuals within it34. Our results suggest that there
might be two traits that individuals possess to some degree: solo
creativity and group creativity. Some individuals have high solo crea-
tivity and low group creativity, while others have high group creativity
and low solo creativity. Together with previous literature, our results
therefore help shed light onwhy individual traits do not always explain
group performance.

To further elucidate the weak correlation between the creativity
of participants in solo and group conditions, we conducted an
exploratory analysis focusing on two different aspects of each parti-
cipant. First, we analyzed the number of unique nouns answered by
each participant in each game, assuming this variable indicates their
ability or motivation to come up with different nouns. Second, we
analyzed the extent of divergent thinking in each participant by cal-
culating the cosine similarity between nouns answered in rounds t and
t + 1. A higher similarity indicates a narrow exploration of a semantic
space, while a lower similarity indicates wider exploration at each step.
Surprisingly, when using these two aspects of a participants’ tactics or
abilities, the correlations between the solo and social conditions were
not meaningfully different (Supplementary Figs. 7b, c), unlike the
performance correlations in Supplementary Fig. 7a. These additional
analyses suggest that while players come up with the same number of
words with similar patterns in solo and social conditions, their per-
formance changed meaningfully in the social condition. While parti-
cipants were incentivized in a way that prevented them from behaving
strategically (see Methods), individual participants could still have
engaged in freeriding in the group condition, whichmay have resulted
in a weaker correlation between creative performance in the solo and
group conditions.

Discussion
The human capacity for social learning in groups is enhanced by
simple forms of AI, especially in situations where there are distractions
or challenges of a certain kind. These simple bots had a notable effect
on the ability of groups to find and exploit rewarding regions of
semantic space, particularly when sharing similar ideas. Importantly,
these bots implement a low-cost, straightforward, and decentralized
algorithm, functioning solely with local neighbor information. While
our bots only processed semantic embeddings of English nouns here,
this approach could easily extend to non-English languages and longer
sentences or more complex ideas using newer language models35,36.
Moreover, simple autonomous agents could also be used in other
settings to identify analogous beneficial behaviors used by humans
themselves in human-only groups.

We observed that, when the association between semantic
meaning and point value was less comprehensible to participants (in
the wide decoy landscapes), groups made slower progress towards a
rewarding semantic area closer to the target, nullifying the advantage
obtained by the most-similar bot. The difficulties encountered in the
wide landscape suggest that navigation in a semantic space may
require humans to form a coherent (if implicit) image of the landscape
in theirminds. Certain types of AI assistancemight, therefore, enhance
collective intelligence by informing humans of such topical informa-
tion during collective semantic navigation so that they can understand
which topics consistently generate valuable ideas.

Themotivation behind the current study was to investigate how a
simple form of AI could affect creativity in human groups. In doing so,
we focused on humans’ ability to navigate through semantic space to
find novel solutions. Our experiment employed a semantic search
problem using a vector spacemodel of semantic representation, given

Fig. 5 | Mean correlation between point values in round t and the cosine
similarity between nouns at round t and t + 1 in the five landscapes. In the
regressionmodel, we controlled for the height (i.e., tall, short or no-decoy) and bot
conditions to estimate the effect of width (wide, narrow, or no-decoy). The results
indicate that the wider landscapes made the relationship between semantic
meaning and point value less perceptible to participants. For the box-and-whisker
plots, the box represents the interquartile range (IQR). The line within the box
represents the median value. The upper (lower) whisker extends from the hinge to
the largest (smallest) value no further than 1.5 * IQR from thehinge.Data outside the
whiskers are plotted individually. Each of the boxes contains 25 independent
groups (i.e., data points).
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the theoretical framework showing that semantic meanings can be
represented by numeric vectors32,37. Moreover, we created a complex
fitness landscape (i.e., decoy landscapes) to simulate optimal idea
search in human collective decision-making.

Prior work has indicated that solo performers are often better at
identifying the best answer because they are not vulnerable to social
herding and are more likely to continue exploration19. In the current
study, although the average guesses were better in networked groups
than in collections of solo individuals (Fig. 3), we also found that
groupsof participants in the solo condition achievedperformance that
was statistically indistinguishable in terms of the best guess in the
game (Supplementary Fig. 5). These results are consistent with pre-
vious literature, suggesting that the performance of solo individuals is
more positively evaluated by the best solution than by the average
solution. The reason participants in the solo condition did not perform
better than those in the group conditions even when we looked at the
best guesses might be explained by the fact that participants were
required to comeupwith nouns andwere not providedwith options to
explore in the present experiment. Thus, some of the positive per-
formance shown in the group conditions should be attributed to
simple heuristics that use nouns from other participants as a starting
point for brainstorming rather than forming a mental model of the
fitness landscape. An additional analysis confirmed that participants in
the solo condition explored less than those in the other conditions
(Supplementary Fig. 10a), indicating that solitary individuals had dif-
ficulties submitting nouns that were semantically distant (see also
Supplementary Fig. 10b).

Prior work on the effect of network structure on collective search
has demonstrated thatmore connected networks aremore helpful for
groups to converge on the appropriate solution, particularly for easy
problems17,19,20. Consistent with this, we found that the most-similar
bot, whichwas designed tomake the network efficient in terms of both
the number of edges and semantic similarities, had a positive effect in
easier landscapes.

Prior research has also suggested the effectiveness of measuring
creativity using natural language processing (NLP)38. However, until
now, the main focus has been on measuring solitary individuals’
creativity in a semantic space. Here, we studied social-level semantic
navigation, specifically in terms of group-focused navigation through
semantically rewarding domains. In this way, our findings contribute
also to this field by demonstrating the effective application of NLP
techniques in social learning research. Indeed, the use of an NLP
resource trainedonanatural corpus allowedus to incorporate the real-
world semantic correlational structure into a controlled experiment by
assigning similar point values to nouns with similar meanings in the
real world. Retaining such naturalistic correlations that exist in the real
world when designing an experimental task can enhance the general-
izability of experimental findings39,40. Methodologically, our work thus
incorporates such a paradigm in an experiment regarding human
group creativity, helping to strike a balance between rigid control and
generalizability.

It is noteworthy that the deployment of autonomous agents like
the most-similar bot could also aggravate ideological correlations in a
narrow circle of people41. Hence, it is essential to carefully consider the
situations in which such agents can enhance human welfare. There is
increasing evidence that simple (and complex) forms of AI can be
added to hybrid systems of humans and machines in a beneficial
way4–6,29,42.We emphasize that, in this experiment, it is the humanswho
are being creative, not the bots; the bots simply help the humans to
help themselves. The bots can afford to be dumb since they are placed
amidst smart humans. Such a concept could be deployed to enhance
the ability of distributed online groups engaged in citizen science
working together43,44 or to help break gridlock in ideas, say, among
workers in an organization (the silo phenomenon)3 or a scientific
team45. Of course, it seems likely that smart bots, like large language

models, when placed in hybrid systems, might have similarly complex
(beneficial or detrimental) effects, and this is an area for future
research28.

The addition of bots also adds additional edges to the network
(or conversely, their removal, as we have framed our approach,
removes edges). Thus, some of the positive effect of the bots (com-
pared to the no-bot condition) could be attributed to the higher
connectivity or different transitivity of the bot-enabled networks
compared to the human-only network (although certainly not all of the
effect, sincewe see improvementwith somebot types and not others).
Therefore, the effects of bot treatments here should be considered as
if they supplement an existing network instead of as if they replace
current members of the network. Considering the research design in
which bots (unavoidably) alter network connectivity during the game,
we note that the impact of the bots employed here should be con-
sidered more than just the strict actions of the bot per se (though not
when comparing across the bot treatments).

The manipulation of group size is also a promising avenue for
futureexperiments. Thepotential role of size in cultural innovationhas
famously been evaluated in a natural experiment related to the peo-
pling of Oceania, where island population size was associated with
both tool number and complexity46,47. Similarly, experimental research
has shown that a larger group size can enhance the adoption of valu-
able information27. On the other hand, in a set of online experiments
involving information sharing in a very different context, it was shown
that larger groups face greater challenges in sharing accurate
information26. Exploring bot strategies in diverse group sizes could
yield different optimal strategies for large versus small groups.

Prior research has investigated amulti-armed bandit task in which
decision-makers can use spatial structure to find an optimal option48.
One search task in prior work, for instance, leveraged actual agri-
cultural data to connect the task to a real-world problem. Similarly, the
word-search game developed for the current study allowed partici-
pants to take advantage of the real-world correlational structure by
creating a controlled experimental task with corpus data. Our task
extended the previously established tasks by introducing a more
complex, yet tractable, search game in the context of collective
decision-making in the presence of simple AI bots, therebymaking the
experiment well connected to a real-world problem.

The landscape that participants were asked to explore was simple
in that it had only one or two peaks, but also complex, since it was a
landscape over a large and high-dimensional space. We deliberately
chose a simple way to create these landscapes that took into account
both the simplicity and the complexity of the desired outcome. Similar
to the NK model of rugged landscapes49, our algorithm allowed us to
control the level of ruggedness, but in a more bespoke way that
focused on the number of words boosted and how far up the rank
they moved.

In the current study, we equipped the bots with the ability to
exchange their ideas with each other within the same sessionwhile the
human participants in this study were not allowed to do the same. The
rationale behind this design was to emulate an ability by bots to
introduce common or uncommon ideas (derived from other humans
themselves, elsewhere in a group) to the humans to whom the bots
were locally connected. Furthermore, this allows us to maximize the
impact of simple bots in human collective decision-making. Future
research may explore different bot design choices.

While we adopted a mixed design (the decoy landscapes were
between-participant treatments, while the bot conditions were within-
participant treatments) to increase statistical power, and studied a
large number of people and groups, we were still constrained by our
sample size. Accordingly, we should note the danger of false
discoveries50,51, particularly for the exploratory analyses. For example,
as reported, the effects of the interaction between the bot treatment
and the landscape were not statistically significant when we examined
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the best solution in each game (Supplementary Fig. 5) although they
were with respect to the average solution (Fig. 3).

The evidence presented here suggests that adding simple bots,
acting with limited (if any) knowledge, butmanipulating the sharing of
ideas offered by human participants themselves within broader
groups, may enhance the creativity of human groups in certain cir-
cumstances. The simplicity and transparency of decision-making in
such simple AI might make it more intelligible to people, thereby eli-
citing more trusting and sustained relationships. Simple autonomous
agents, when mixed into systems of humans, might offer the same
advantages as more complex and expensive ones, but with much less
effort.

Methods
This study was approved by the Yale University Committee on
the Use of Human Subjects. All ethical regulations were met in
conducting the current study
Preregistration is at https://doi.org/10.17605/OSF.IO/X8GWS. The date
of the preregistration was January 7, 2023. The key analyses presented
in relation to Fig. 3 and Fig. 4a were preregistered analyses. Other
analyses were exploratory.

Participant recruitment
Participants were recruited through Amazon Mechanical Turk to par-
ticipate in the experimental task on a website implemented using
Breadboard software (available athttp://breadboard.yale.edu). Prior to
beginning the task, all participants gave informed consent as approved
by the Yale University Committee on the Use of Human Subjects. Our
tutorial contained tests designed to filter out bots and reinforce par-
ticipants’ knowledge about the task. Those who were unable to cor-
rectly answer all of the questions were not allowed to participate in the
task. We also took other measures to detect and remove bots,
including reCAPTCHA (available at https://www.google.com/
recaptcha/about/) and attention checks.

Following the tutorial, participants waited up to 10minutes for
enough participants to join the experimental task in order to begin.
After completing the main task, participants answered a post-session
questionnaire (including basic demographics). Upon the completion
of the experiment, participants received $3 compensation for partici-
pating and abonus of up to $11 dependingon their performanceon the
main experimental task. The duration of the whole experiment was
approximately 40minutes.

Following our pre-registered plan, we first recruited 125 groups,
each consisting of 15 participants (1875 participants). This resulted in
25 unique groups for each of the five landscape variables, including the
no-decoy, short/narrow, short/wide, tall/narrow, and tall/wide land-
scapes. Based on the initial data analysis, we decided to deviate from
the pre-registered plan and recruit another 25 groups (375 partici-
pants) for the tall/wide landscapewhile following the samemethods as
in the recruitment of the original 25 groups (see Supplementary
Methods for details).

Network groups
Our network generation model began with 15 nodes and randomly
generated ties between them according to the Erdos-Rényimodel with
a 20% tie saturation. Then, we added two nodes representing bots to
the network. We randomly selected 11 of the 15 human nodes and
randomly assigned 7 of them to form a tie with one of the bot nodes
and the remaining 4 to form a tie with the other bot node. These
numbers were chosen based on simulations which suggested that this
was roughly the expected degree distribution of the two vertices with
no neighbors in common that had the highest combined number of
neighbors. We created a total of six different networks using this
algorithm for (random) use in our experiment (see Supplementary
Fig. 1 for these six networks).

Word search game
To investigate how autonomous agents might help groups explore a
semantic space, we developed a task in which participants search for
high-reward nouns from a large pool of real words. Specifically, we
collected 20,000 English nouns frequently used online and assigned
point values or rewards to each of them, from 1 to 20,000 (see Sup-
plementary Methods for details). We manually removed 33 vulgar or
inappropriate words from the dataset so as not to be a distraction to
participants in the game.

During the experiment, participants played 5 gameswith different
nouns carrying the highest point values in each game. Each game
consisted of 25 rounds, during which participants had 7 seconds to
submit an answer. After a round was over, the point value of the noun
each participant answered was displayed in a table on the screen for
7 seconds (Table 1). Then, the next round started, and participants
could submit another noun. Participants had an additional 14 seconds
during the first round of each game to familiarize themselves with the
game. When a game was finished, participants were informed that the
nouns may carry different point values in the next game.

Participants were also able to see the latest answers (i.e., nouns)
and corresponding point values of their immediate network neigh-
bors. In addition to this information, they could always see the noun
with the highest point value so far from among those chosen by their
network neighbors (or themselves) as shown in Table 1. If a participant
or any of their neighbors found a noun with a higher point value than
the previous highest value noun, the information was updated imme-
diately. In the first round of a game, no social information was
provided.

Participants were told that their monetary payoff from the
experiment would be based on the highest point value their whole
group (of 15 people) achieved in eachgame (the totalpoint values from
the five gameswere converted to dollars at the end of the experiment).
They were explicitly told that even if they do not personally find the
highest point noun, if someone in their group did, it would count
toward their own payoff. We provided this incentive to participants
based on their group’s highest score to prevent any complexity that
may arise from a producer-scrounger game structure52 caused by
individual-level scoring and also to ensure that therewas no advantage
for participants to repeat the same noun. For this reason, we alerted
participants when a participant gave the same answer twice in a row
within one game.

Additionally, participants were instructed that (1) among the
20,000 nouns, different nouns carried different point values, (2)
nouns used in similar contexts carried similar point values, (3) when
theyprovide anoun, theywould know thepoint values assigned to that
noun, (4) the nouns should be in lower case, singular form, and be one
word, and (5) if their answer is not included in the list (of 20,000
nouns), it would be marked as invalid with zero points.

Target and decoy nouns
We defined a target noun as the noun with the highest point value.
Participants were incentivized to search for a target noun that we
selected from the list of 20,000 nouns. A target noun had a point value
of 20,000, and a noun that was semantically most similar to the target
noun had a point value of 19,999. A noun that was semantically most
distant from the target noun had a point value of 1. Thus, the point
values of the 20,000 nouns ranged from 1 to 20,000. To prevent
participants from making predictions about how many words were
more valuable than the current guess,wemultiplied the point values of
eachword in eachgameby a randomnumberbetween 1 and3 and then
rounded this product to the nearest integer before displaying it on the
game screen. Accordingly, the point values could exceed 20,000
depending on the multiplication factor. Thus, participants were told
before the game that the highest possible point value for a noun may
vary across games. For clarity, this was meant to prevent participants
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from utilizing meta-strategies when playing the game. But when dis-
cussing ranks in the paper, wedonotmultiply them.To avoidpotential
biases caused by using only one target noun in the experiment, we
selected 18 different nouns from different semantic clusters as target
nouns and randomly used one of them in each game. See Supple-
mentary Methods for details.

In some experimental treatments, we employed a decoy noun
in addition to the target noun. The point values of the decoy noun
and other nearby nouns were artificially boosted. However, the
target noun was still the most valuable, with a point value of
20,000. Accordingly, the decoy noun behaved like a local opti-
mum in the semantic space. The same 18 target nouns also
functioned as decoy nouns, with each noun being assigned as the
decoy for one of the other target nouns. Targets were matched
with decoys in such a way that targets and decoys were seman-
tically distant from each other (see Supplementary Methods). An
illustration of the boosting algorithm can be seen in Supple-
mentary Fig. 2. Participants did not know about the decoy.

It is noteworthy that the non-uniform distribution of nouns can
add ruggedness to the idea landscape, when a lack of nouns in a region
of the landscape hinders traditional hill-climbing methods. However,
these pitfalls are relatively weak, particularly with the large jumps that
participants make when playing this game.

Statistical analysis and software
Analyses were conducted using the RStan v.2.21.853 and its inter-
face brms v.2.19.054 package in R v.4.3.055. In all the analyses, we
used default prior distributions of the brms package and depen-
dent variables were normalized to a mean of zero and a standard
deviation of 1. To account for repeated measurements, varying
intercepts for groups and varying intercepts and slopes for target
nouns were included in a regression model, as indicated. In
addition to the posterior mean of beta coefficients and correla-
tion coefficients, we reported the highest density intervals (HDI)
calculated by the bayestestR v.0.13.156 package in R. When using
the Markov chain Monte Carlo (MCMC) method, the number of
warm-up iterations was set to 1000, the number of post-warm-up
iterations was set to 1500, and the number of chains was set to 10.
In all the analyses, Rhat statistics were below 1.05, which indicates
that the MCMC methods converged. We used the Python package
NetworkX57 for creating the networks.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study have been deposited in the Open Science
Framework repository and are available at https://doi.org/10.17605/
OSF.IO/CS3R2.

Code availability
The code used in this study has been deposited in the Open Science
Framework repository and is available at https://doi.org/10.17605/OSF.
IO/CS3R2.
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