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Abstract
Social networks provide a basis for collective resilience to disasters. Combining the quasi-experimental context of a major earthquake in 
Ya’an, China, with anonymized mobile telecommunications records regarding 91,839 Ya’an residents, we use initial bursts of 
postdisaster communications (e.g. choice of alter, order of calls, and latency) to reveal the “important ties” that form the social 
network backbone. We find that only 26.8% of important ties activated during the earthquake were the strongest ties during normal 
times. Many important ties were hitherto latent and weak, only to become persistent and strong after the earthquake. We show that 
which ties activated during a sudden disaster are best predicted by the interaction of embeddedness and tie strength. Moreover, a 
backbone of important ties alone (without the inclusion of weak ties ordinarily seen as important to bridge communities) is sufficient 
to generate a hierarchical structure of social networks that connect a disaster zone’s disparate communities.

Keywords: tie strength, structural embeddedness, social network activation, quasi-experiment, earthquake disaster

Significance Statement

In exploring the social network dynamics after a sudden natural disaster, we use the logic of revealed (social) preference (based on real 
communications decisions during emergency) to reveal which ties were most important and resilient. We find that tie strength, the 
most common measure for relationship strength, has limited ability to predict which social ties are prioritized: tie strength predicts tie 
importance for embedded ties but not necessarily for unembedded ties. These findings challenge common assumptions of empirical 
social networks research, where frequency-based tie strength and embeddedness measures are often used as independent measures 
of relationship strength. Rather, a joint assessment of both the dyadic relationship’s historical strength and its structural embedded
ness with the wider social network is necessary to reveal how reliable and resilient social ties are during emergencies.

Competing Interest: The authors declare no competing interest.
Received: March 23, 2023. Accepted: October 19, 2023 
© The Author(s) 2023. Published by Oxford University Press on behalf of National Academy of Sciences. This is an Open Access article 
distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

Introduction
The long-term integrity of human social systems depends in part on 

their ability to weather disasters, which have continuously afflicted 

societies throughout recorded history and which continue to loom 

large under the specters of climate change, population pressures, 

and ecological destruction (1–3). During disasters, social networks 

provide a decentralized basis for society’s collective resilience. 

Social networks can help households mobilize resources (4–6), pro

vide psychological support (7, 8), and access information (e.g. coping 

strategies) and can even compensate for the lack of human capital 

(9). Recent empirical research in the emerging field of computation

al social science has shed light on how disasters affect social media 

usage, economic transfers, and migration patterns (6, 7, 10–15). 

However, there is little empirical understanding, particularly at 

the population level, of how social network dynamics might change 
during emergencies, for example, who victims first turn to for sup
port, who comprises the backbone network that activates during 
emergency, or the macrofeatures of this emergent social network.

Here, we explore such questions and also attempt to shed light 
on the theoretical basis of relationship strength, which provides 
the microlevel foundation for social interconnectivity and resili
ence during disaster. We combine the quasi-experimental context 
of the 2013 Ya’an earthquake (Ms 7.0) in Sichuan, China, with ano
nymized mobile phone records (CDR, Call Detail Record) of 91,839 
residents of Ya’an and analyze how communications unfolded 
immediately before and after the prefecture was stricken. We 
use these uncommon data to identify who earthquake victims pri
oritized after the earthquake. For example, we sought to predict 
who victims called first, social ties we refer to as “important 
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ties.” This behavioral measure of “revealed tie importance” (e.g. 
choice of alter, order of calls, and communications urgency or la
tency) is analogous to the axiomatic concept of revealed prefer
ence in economics, namely, that our observed choice between 
objects in a set reveals our relative preferences for those objects 
(16). In the immediate aftermath of disaster, victims may activate 
social networks to share information about their wellbeing, plan 
future action, request assistance, and seek emotional support. 
In this context, who victims first call (and the urgency and latency 
of their communications) is a meaningful signal of relationship 
importance and reveals a ground truth that is difficult to observe 
under normal circumstances.

Conceptual background
Tie strength was originally defined as a reflection of the “the emo
tional intensity, the intimacy, and the reciprocal services which 
characterize a [social] tie” (17). Extant empirical research general
ly assumes that tie strength and the quality of a relationship 
can be measured by the frequency (i.e. “intensity”) of interactions 
(18–21). In recent empirical literature, tie strength has been used 
to operationalize relationship closeness, depth, and even emo
tional connection (18–26). This perspective suggests that an 
ego’s most frequently contacted alters are their strongest and 
most important relationships.

We investigate and challenge this assumption by using ob
served choices (ranking or temporal sequence of who earthquake 
victims first call) during an earthquake to infer relationship im
portance, which we then compare to relationship strength meas
ures, such as (preearthquake) tie strength. We later show that tie 
strength, by itself, is a weak predictor of tie importance and social 
network activation behavior immediately after the earthquake.

We hypothesize that the limited predictive power of tie strength 
may be due to its dyadic nature, which, by virtue of ignoring the 
structural aspect of social relationships, offers an incomplete as
sessment of what makes relationships deep and resilient. Indeed, 
the classic “strength of weak ties” concept also theorizes that “all so
cial action and outcomes, are affected by actors’ dyadic (pair-wise) 
relations and by the structure of the overall network of relations” 
(27). In other words, whether people are willing to engage in social 
action for each other depends not only on (i) their pair-wise rela
tionship strength but also on (ii) how they are embedded within the 
wider social network (17, 27). The former construct is often called 
“relational embeddedness,” while the latter is called “structural em
beddedness” (27, 28), which we will refer to as “tie strength” and 
“embeddedness,” respectively, to avoid confusion.

Embeddedness is the notion that understanding the relation
ships or behaviors between individual actors requires an under
standing of their social network structural configuration (17, 27). 
Embeddedness is theorized to be the social mechanism behind in
creased levels of trust, altruism, cooperation, and communica
tions in relationships (29–33), with the underlying principle that 
within close-knit (i.e. highly embedded) networks, frequent social 
interactions between actors reinforce existing social norms, be
haviors, and interactions (11, 30–32). Previous research shows 
that greater embeddedness encourages cooperative social behav
iors such as favor exchanges (33, 34), relationship formation (35) 
(and even marriage (36)), dyadic trade (37), stable collaborations 
(38), and social conformance (26). Embeddedness also tends to 
be more stable than other properties of relationships since it en
meshes multiple actors and is less under the control by one pair 
of individuals, let alone a single individual (31). Consequently, 

one may also expect that embedded ties are more likely to be re
silient sources of social support during emergencies.

In short, relationship strength is theorized to have two major 
aspects: the strength of the dyadic relationship (i.e. between two 
individuals), which is typically operationalized by tie strength 
and frequency of communications, and embeddedness, which is 
typically operationalized by the number of common friends 
shared by two individuals (i.e. the “overlap parameter,” OP) 
(19, 26, 31, 34). Prior research has often investigated the independ
ent effects of tie strength versus embeddedness or even treated 
them as alternative measurements of relationship strength 
(19, 26). For example, both tie strength and embeddedness predict 
how much close individuals are and how much influence they ex
ert on each other (26). However, there is less understanding of how 
tie strength and embeddedness can interact to jointly affect 
behavior.

Previewing our results briefly, we find that tie strength by itself 
is not the strongest predictor of relationship importance in post
earthquake communications (for example, who an ego calls first, 
how quickly an ego makes the first call, and whether that person 
immediately reciprocates). Rather, the joint effect and interaction 
between tie strength and embeddedness best predicts emergency 
social network activation behavior; in other words, structural em
beddedness moderates whether strong ties are important ties dur
ing the earthquake.

Measures
Our analysis is based on individual-level mobile telecommunica
tions data of 91,839 active local subscribers in the Ya’an prefec
ture of China (54,857 are in family plans, which have at least 2 
members) during 2013 March 1 to May 31 (see Materials and meth
ods for details and Table S1 for summary statistics). We oper
ationalize tie strength using the frequency of communications 
between an ego and alter (19–21), i.e. voice call frequency, during 
the 4 weeks prior to the earthquake. We also use an alternative, 
rank-based measure of tie strength (21) in our supplementary 
analyses (Fig. S8, Table S4). We measured embeddedness using 
the number of common friends shared by two individuals (OP) 
(19, 26, 31, 34) for the same period.

Our empirical strategy is to link tie strength and embeddedness 
to dependent variables that are indicative of relationship strength 
or nature of relationship, which serve as benchmarks to compare 
the ecological validity of tie strength and structural embeddedness. 
In particular, we considered tie importance, communications la
tency, reciprocity, and family plan membership as dependent 
variables.

Important ties
We define the first alter that an ego called after the earthquake as 
an “important tie.” We make no assumptions for motivation or pur
pose of communications, which may vary from informational to 
emotional support to coordination needs. For purposes of determin
ing important ties, we only considered the first calls that were not to 
emergency and service hotlines. This definition is independent of 
network size (a network must contain more than one individual, 
so by definition everyone has at least one important tie).

Network activation latency
We measured temporal latency until the ego’s first outgoing call 
(i.e. hours since earthquake), which we refer to as activation la
tency. The intuition behind this measure is that the speed and 
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urgency with which the ego contacts the important tie reflects 
how important it is for the ego to communicate with them and 
is some reflection of their closeness, intimacy, and relationship 
importance. The secondary implication of the measure is that it 
reflects the ego’s speed and urgency in activating their social net
work as a whole. We also examined the latency of the second 
through fourth ranked contacts (Fig. 1a).

Overall, the temporal latency patterns comport with our expect
ations that communications immediately after a disaster should be 
characterized by urgency, which enhances our confidence in the 
data. The temporal distribution of first outgoing calls (i.e. important 
ties) is captured by an exponential distribution p(x) ∼ eρx, with the 
scaling parameter ρ = −0.0061 (Fig. S5); in other words, the vast ma
jority of first outgoing calls were made with low latency, soon after 
the earthquake. The temporal latency of earthquake victims’ first 
four outgoing calls (to the most important, second, third, and fourth 
most important ties) is characterized by a pattern of declining ur
gency for later communications, which can be seen in the steeper 
gradient of and greater spacing between earlier calls (Fig. 1a).

Immediate reciprocity
Reciprocity is critical for the maintenance of cohesion, trust, rela
tional stability, and social capital and is commonly used to oper
ationalize social support and relational cohesiveness (24, 39, 40). 
Stronger social relationships, particularly those characterized by 
repeated interactions or in the context of favor exchange, are 
characterized by reciprocity of social actions (24, 33, 34). We 
used a strong measure of (immediate) reciprocity and define an 
important tie as reciprocal if the first call out and first call in 
were directed to and from, respectively, the same phone number 
(i.e. the important tie was also the first social tie to call the ego; 
this was the case for 13.28% of mobile subscribers in our data 
set). Such “immediate” reciprocity in communications, in advance 
of communications with other social ties, may be a strong signal 
of mutual concern and relationship depth.

Family membership
Kinship networks may play outsized role during emergencies (41–44). 
One might wonder the extent to important ties is members of kinship 
rather than volitional (nonkinship) networks. We used membership 
in the telecom carrier’s family plan as a proxy of whether or not the 
important tie was a family member. The measure is conservative be
cause family members may have independent telecom plans; the 
measure is also relatively objective because the carrier requires na
tional ID verification to qualify for family plan subscriptions. This de
pendent variable also allows us to test the degree to which family ties 
are strong or embedded.

It should be noted that the decision to first communicate with 
family or nonfamily members is relevant regardless of cohabit
ation. For example, for egos who live apart from family plan mem
bers, the calling decision may reflect that family member’s 
relative importance to the ego. For families that live in the same 
home, intrafamily communications immediately after the earth
quake may reflect the close-knit nature of the family unit and 
greater social coordination in postdisaster response (e.g. families 
may divide tasks, split up, and provide information updates).

Results
Exploratory analysis
We first investigate whether tie strength and embeddedness 
measures can predict tie importance (who an ego first calls after 

an earthquake). It is apparent that the most important tie is not 
necessarily the strongest tie (as measured by history or frequency 
of prior communications). Only 26.8% of important ties were also 
the strongest (most frequent) tie during predisaster time periods; 
35.5% (19.8%) of important ties were ranked beyond top five (top 
ten) by tie strength. The discrepancy between tie importance 
and (rank of) tie strength, r, is characterized by a power law func
tion, p(r) ∼ r−λ, with the scaling parameter λ = 1.089 (Fig. S5). 
Indeed, the average tie strength of the important tie (17.6) is weak
er than that of the second (22.8, P < 0.001), third, and fourth out
going contacts (Fig. 1b). In fact, 40.7% (20.1%) of important 
(second most important) ties had fewer than 3 communications 
with the ego in the prior month; in other words, many important 
ties were in fact “weak ties.”

Embeddedness has a positive linear relationship with tie strength 
up to an OP of about 15, after which the relationship flattens 
(Fig. S6a). However, as a single independent variable, embeddedness 
is relatively more predictive of who an ego calls first after the earth
quake. For example, egos have more embedded ties with the import
ant tie (34.6%) than with the second (28.0%), third (26.5%), and fourth 
most important ties (25.21%), P < 0.001. When we dichotomously 
classify important ties into embedded and unembedded ties 
(Fig. 2a), the average tie strength of embedded ties is over two times 
stronger than that of unembedded ties (28.25 vs. 11.91, P < 0.001). For 
embedded ties, 35.27% of the strongest ties are important ties; for un
embedded ties, only 22.14% of the strongest ties are important ties. 
Furthermore, at any level of tie strength, embedded important ties 
typically have a higher tie ranking than unembedded important 
ties (Fig. 2b). The relative tie strength of embedded and unembedded 
important ties both follow a power law distribution.

Quantitatively, greater embeddedness as measured by the OP is 
also predictive of likelihood that an important tie is a family plan 
member but only up to an upper bound of OP ∼7, after which it be
comes a negative predictor (Fig. S6b). The simple dichotomous vari
able of whether the ego and the important tie are embedded (i.e. 
share at least one common friend) is also highly predictive of the 
characteristics of the important tie (Fig. 1c and d). Embeddedness 
is also indicative of how tight-knit families are; when embedded, 
egos in larger families are more likely to call family members first 
(Fig. S7a); when unembedded, family size has no effect on likelihood 
of intrafamily communications occurring first (Fig. S7b).

Tie strength is more predictive of communications behavior 
when assessed jointly with embeddedness. Structural embedded
ness plays a significant moderating role between tie strength and 
activation latency; that is, strong ties are most important when 
they are also embedded. For example, at each level of tie strength 
(and tie ranking), and especially for weaker ties (i.e. <15), embed
ded ties have significantly lower latency (i.e. are called earlier) as 
compared with nonembedded ties (Fig. 1c).

The interaction is even more extreme for the family tie– 
dependent variable. Tie strength (and tie ranking) is a positive pre
dictor of family tie activation only when the important tie is em
bedded and has no predictive power when the important tie is 
not embedded (Fig. 1d, Fig. S8b). We also observe a curvilinear re
lationship; the marginal effect of tie strength on likelihood of fam
ily tie activation is stronger for weak ties (i.e. <20) than strong ties 
(i.e. the curvature for the effect of embedded ties is steeper for 
weak ties than strong ties).

Robustness check for inbound communications
We observe analogous patterns when predicting the source of the 
first incoming communications. First inbound communications 
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are the initial manifestation of social support for the ego from 
their social network (Fig. S8). At each level of tie strength, embed
ded ties are relatively faster in calling the ego after the earth
quake. Tie strength is not predictive of whether the first 
incoming call is from family unless the tie is embedded, in which 
case tie strength becomes a strong positive predictor.

Hierarchical network of important ties
Our findings have macronetwork implications. When we con
sider the geographical distribution of destination of first out
going calls (which defines the backbone of Ya’an’s social 
network), we find that they form communities that map per
fectly onto the social and geographical structure of the entire 
Ya’an prefecture (i.e. the macrostructure of society; Fig. 3, 
Figs. S3–S4). Notably, the giant connected network of 

important ties quickly links the stricken prefecture’s towns 
and villages, which connect in a hierarchical manner, i.e. 
towns/villages are connected to the county seat but not with 
other towns/villages, especially in the initial time after the 
earthquake. We also applied a clustering identification method 
to important tie networks and confirmed the hierarchical 
structure of the prefecture community’s social network back
bone (Fig. S3). The role of strong versus weak ties in connecting 
communities is of theoretical importance, since weak ties are 
usually assumed to form the bridges connecting disparate 
communities in social networks (19). Here, we find that import
ant ties, which are more analogous to strong ties, form the ini
tial social network backbone that connects the disparate 
villages and towns to form the prefecture’s macrosocial net
work in the immediate aftermath of disaster.

A B

C D

Fig. 1. Tie importance, tie strength, and embeddedness. a) Temporal patterns of the first four outgoing calls after the earthquake. We interpret temporal 
order of calls as a revealed behavior that denotes relative importance of the social tie in the immediate aftermath of the earthquake. The first outgoing 
contact (i.e. important tie) is characterized by the greatest temporal urgency. b) Tie strength of the first four outgoing calls; the average tie strength of the 
important tie (17.6) is weaker than that of the second (22.8, P < 0.001), third, and fourth outgoing contacts. Overall, 40.65% of first outgoing calls were to 
weak ties (<3 communications in prior month), compared with 20.08% for the second outgoing contacts. In other words, tie strength does not necessarily 
predict rank order, and important ties can be weaker. c) The latency of social network activation is predicted together by both tie strength and 
embeddedness, and embedded ties tend to be activated more quickly than unembedded ties, especially for weaker ties. d) Likelihood that the first 
outgoing call is directed to family has a curvilinear relationship with embeddedness strength, which initially increases but declines after ∼7; the strongest 
predictor is simply the binary variable of whether family ties are embedded or unembedded. Embedded family ties are far more likely to receive first 
outgoing calls (Pr = 0.440 vs. 0.053, P < 0.001). Here, and in other figures, embedded ties are defined as ties that have a nonzero OP, i.e. share at least one 
common social tie.
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Statistical models
The model-free analyses suggest that tie strength and embedded
ness interact to drive postearthquake social network activation 
dynamics and that without embeddedness, tie strength is less pre
dictive of relationship strength and depth. Next, we leverage the 
exogenous shock of the earthquake to formally test how tie 
strength and embeddedness affect communications dynamics 
after the earthquake. Specifically, we test how tie strength and 
embeddedness interact with the level of earthquake intensity to drive 
individuals’ postearthquake communications behavior. Our stat
istical models, besides statistically separating how tie strength 
versus embeddedness affects response to an exogenous shock, 
also address numerous potential sources of endogeneity (e.g. re
verse causality and potential third variable confounders).

Our analyses exploit the fact that residents experienced different 
levels of earthquake intensity depending on their geographical loca
tion (Fig. S4). Earthquake intensity was random insofar that resi
dents did not know nor could affect its intensity and location 
ex-ante. We divide residents into “severe” (earthquake magnitude 
VIII or above) and “mild” (magnitude VII or below) groups (as defined 
by Typical Maximum Modified Mercalli Intensity; Supplementary 
Material Section 2.1), and the main difference being whether there 
was physical damage to buildings or not. Presumably, experiencing 
physical damage (e.g. structural damage and economic loss), as op
posed to only experiencing violent shaking without suffering dam
age, increased the need for social support, social coordination, and 
disaster response activities. Consequently, the interaction effect be
tween the earthquake shock and tie strength versus embeddedness 
tests how greater (dyadic) tie strength and embeddedness, respect
ively, affects social dynamics in response to the earthquake.

Three separate sets of statistical models test the impact of tie 
strength, embeddedness, and their interaction terms with earth
quake intensity on three different dependent variables:(i) activa
tion latency (hours), (ii) whether the important tie reciprocates 
by calling back, and (iii) if the important tie is a family plan mem
ber or not. In each model, we operationalize tie strength using to
tal frequency of communications between the ego and important 

tie in the 4 weeks prior to the earthquake and operationalize em
beddedness using the number of mutual social ties between them 
(OP) in the same period. All models include individual fixed ef
fects. Robustness checks include using a normalized measure of 
tie strength, roaming only samples, testing second through fourth 
calls, selecting for non-WeChat users, and using a nonparametric 
decision tree model (see Supplementary Material Section 4).

Model 1: activation latency
As presented in Table 1, the main effects of tie strength and em
beddedness are both negative (P < 0.001). However, we observe a 
significant positive interaction effect between tie strength and 
embeddedness (P < 0.001), which suggests that ties that are both 
stronger and more embedded have slower activation latency. 
Earthquake intensity had no significant main effect; however, its 
significant positive two-way interactions with tie strength and 
embeddedness, and positive three-way interaction, show that 
earthquake intensity compounds the positive interaction between 
tie strength and embeddedness.

Overall, we find that tie strength and embeddedness have sep
arate as well as interactive effects on response latency. The re
sults suggest diminishing returns (in response latency) for 
having both high tie strength and embeddedness. Although tie 
strength and embeddedness individually predict faster latency, 
ties that are both strong and embedded are slower to activate 
than ties that are high and low, or low and high, in tie strength 
and embeddedness, respectively. This implies that, for a given lev
el of embeddedness, weaker ties will be activated relatively faster 
than stronger ties. This interaction effect is represented visually 
by the more significant difference between embedded and unem
bedded ties for weaker ties in Fig. 1c and also by the kinked lines in 
the Fig. 4 heat map.

Model 1 robustness checks
We observe the same significant positive three-way interaction for 
the temporal latency of the second, third, and fourth outgoing 

A B

Fig. 2. Relationship between important ties, tie strength, and embeddedness. a) Embedded important ties typically have stronger tie strength than 
unembedded important ties. The distributions for both are fitted by a power law function with an exponential cutoff, p(x) = ax−be−cx, where a = 0.084, 
b = 0.515, and c = 0.018 for embedded ties and a = 0.342, b = 1.21, and c = 0.010 for unembedded ties. b) The relationship between ranking-based (x) and 
frequency-based (y) measures of tie strength both follow a power law, i.e. y = ax−b, where a = 57.7 and b = 0.801 for embedded ties and a = 37.5 and 
b = 0.816 for unembedded ties; the two distributions are almost parallel (b-values are nearly equal), which suggests that embeddedness affects 
communications frequency for any given tie ranking (and vice versa) in a constant manner.
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A B

Fig. 3. Geographic distribution of important ties. The social network backbone formed by the first outgoing calls in Ya’an occurring within (a) 60 min and 
(b) 240 min after the earthquake, transposed onto map of Ya’an. Edge width is proportional to the square root of the number of contacts between the two 
nodes; edge threshold set to 5. Node size is proportional to the square root of the number of self-referencing ties (i.e. bigger node denotes more ties 
directed to alters in the same node). Geographical coding (circles A to H) corresponds with Table S2. The 01 node under each geographical code represents 
the county seat (while the node A01 is the metropolitan city); other numbered nodes represent towns and villages in each county. The social network 
backbone with important ties corresponded with the geographic and administrative hierarchical structure of Ya’an prefecture. The prefecture-level city 
(A01) is clearly identified as the regional hub.

Table 1. Impact of tie strength and embeddedness on social network activation latency.

Dependent variable = latency of first outgoing call (hours) Coef. Robust SE z P > |z|

Tie strength of important tie −0.0020 <0.001 −246.11 <0.001 ***
Embeddedness (OP) of important tie −0.0453 <0.001 −512.71 <0.001 ***
Earthquake intensity dummy (1 = severe) 0.0031 0.004 0.76 0.447
Tie strength*embeddedness (OP) of important tie 0.0004 <0.001 459.05 <0.001 ***

Tie strength*earthquake intensity dummy 0.0022 <0.001 172.00 <0.001 *
Embeddedness (OP) of important tie*earthquake intensity dummy 0.0023 <0.001 17.02 <0.001 ***
Tie strength*embeddedness (OP) of important tie*earthquake intensity dummy <0.0001 <0.001 12.54 <0.001 **
Important tie is family dummy −0.1479 <0.001 −405.39 <0.001 *
Family plan size (1 to 5) 0.0060 <0.001 53.46 <0.001
Degree centrality of ego 0.0003 <0.001 67.73 <0.001 *
Total call frequency of ego −0.0037 <0.001 −3004.57 <0.001 ***
Total text frequency of ego 0.0003 <0.001 308.97 <0.001 ***
Internet usage frequency of ego <0.0001 <0.001 20.73 <0.001 ***
Total WeChat usage frequency of ego −0.0002 <0.001 −92.35 <0.001 ***
Total usage frequency of other instant messaging of ego −0.0007 <0.001 −783.86 <0.001 ***
Smartphone dummy (1 = smartphone user) −0.1169 <0.001 −476.89 <0.001 ***
Roaming dummy (1 = traveling outside of prefecture) −0.5709 <0.001 −1320.25 <0.001 ***
Rural dummy (1 = rural) 0.0328 <0.001 87.08 <0.001 ***
Damage dummy (1 = cell towers damaged) −0.1123 0.003 −33.95 <0.001 ***
Constant 8.5800 0.003 3227.31 <0.001 ***
Pseudo R-squared: 0.2174
Number of obs = 89,907

Poisson regression. Communications variables are average monthly data from 4 weeks before the earthquake. Fixed effects for 159 counties are included. ***P < .001, 
**P < .01, *P < .05.
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calls (Tables S10–S12). However, a notable difference for these 
calls is that embeddedness is a stronger predictor of temporal la
tency than tie strength. Furthermore, stronger tie strength actual
ly predicts slower temporal latency for the third and fourth calls, 
particularly at higher earthquake intensity. This is consistent with 
the idea that important ties are often latent during normal times, 
when people may call the third or fourth ties more.

In addition, we use rank percentile as an alternative operation
alization of tie strength and find consistent results (Table S4). We 
also tested the same models selecting only for customers who 
were roaming (i.e. out of town, N = 10,712; Table S5; the large 
number of roaming customers reflects that a significant number 
of family plan subscribers worked in other parts of the province 
or country). An alternative interpretation of Model 1 is that the 
most urgent first outgoing call is to core family members, and 
thus, the dependent variable might simply reflect if the ego lives 
with (or next door to) their core family members. However, this 
is unlikely to be the case since we observe the same significant 
positive two-way interactions with tie strength and embedded
ness for roaming customers, who were all away from home. 
Overall, embeddedness is a better predictor for response latency 
than tie strength and weaker ties activated sooner for a given level 
of embeddedness.

Model 2: immediate reciprocity
We next examine how these factors affect the likelihood that the 
important tie is the same social tie who also made the first in
bound call to the ego. Reciprocity serves as another behavioral 
marker of relationship importance. We find that tie strength and 
embeddedness have significant positive main effects on reci
procity (P < 0.001; Table 2). However, similar to Model 1, we also 
observe a significant negative three-way interaction between tie 
strength, embeddedness, and earthquake intensity (P = 0.023); 
once again, this negative term may reflect diminishing returns 
for tie strength and embeddedness. This implies that weaker 
ties will have more reciprocity than stronger ties for a given level 
of embeddedness.

Model 3: activation of family ties
Next, we use a probit model to predict whether an ego’s first call is 
to family plan members or not. For this analysis, we only select 
egos who are in family plans and have at least another family 
plan member in our data set (N = 54,857; Table 3). The decision 
to call family plan members first was not a default; in fact, initial 
communications were dominated by calls to nonfamily plan 
members. Of the users who were not roaming, only 16.21% of first 
outgoing calls were to other family plan members; users who were 
roaming, and thus away from home, were 50% more likely to call 
other family plan members (24.35%).

Consistent with previous models, tie strength and embedded
ness are both positive predictors of whether the important tie is a 
family plan member (P < 0.001). However, the overall set of inter
action effects is more complex: tie strength and embeddedness 
have a significant negative interaction effect (P < 0.001); earthquake 
intensity and tie strength have a positive interaction effect 
(P = 0.001); earthquake intensity and embeddedness have a nega
tive interaction effect (P = 0.005); the three-way interaction effect 
is positive (P < 0.001). Overall, the negative interaction effect be
tween tie strength and embeddedness is more significant than oth
er interaction terms and is the dominating effect. As Fig. 1d 
illustrates, for the embedded ties, tie strength has a diminishing 
marginal effect on the likelihood of calling a family member. That 

is, the marginal effect of tie strength in predicting activation of fam
ily ties is greater for relatively weaker ties (than stronger ties).

Roaming and internet robustness check
We observe similar results when only selecting for roaming cus
tomers (who are also family plan members, N = 10,794; 
Table S16); it is thus unlikely that our model only predicts likeli
hood of family cohabitation. We also observe the same pattern 
of results when selecting only for customers who subscribed to 
internet services and used mobile apps (Table S15), which sug
gests that our results are unlikely to be driven by technological so
phistication or internet access–related factors (e.g. if only the 
elderly or less technologically adept drove the original effects).

WeChat robustness check
We explore the impact of WeChat adoption on our data in 
Supplementary Material Section 1; we found that WeChat did 
not affect voice call usage, the focal behavior in our analyses, dur
ing our study period. We also conduct an additional empirical 
analysis by excluding those who previously used WeChat before 
the earthquake in our mobile phone data (the carrier observes 
app data usage for billing purposes). This additional analysis 
yields consistent results for activation latency, immediate reci
procity, and family plan tie activation prediction (Tables S17–S19).

Replication using decision trees
As an alternative analysis, we use a decision tree model, a non
parametric supervised learning method for prediction, to explore 
the predictive capacity of tie strength and embeddedness. 
Decision trees can help discover interactions among independent 
variables, in which case variables would appear together in a tra
versal path. The results illustrate that tie strength and embedded
ness interact to predict the emergency communications behavior 
and yield consistent results as our regression models (Table S20, 
Figs. S12–S14).

Finally, to provide greater interpretability for our results, we use 
a random forest model to generate importance scores for tie 
strength and embeddedness for Model 3 (see Supplementary 
Material Section 4.7). The scores for variable importance highlight 
that tie strength and embeddedness are the two most significant 
predictors, with importance scores of 57.32 and 29.62, respectively.

Discussion
During disasters, social ties can function as social capital and 
serve as a means for victims to access to information, resources, 
and emotional support (45, 46). Overall, our findings reveal the 
subtle behavioral and relational aspects of social network activa
tion in the extreme context of an earthquake. Our main concep
tual contribution is in investigating the relationship between 
two of the most widely used social network metrics, tie strength 
and embeddedness, and their joint effects on real social behavior 
during the disaster. The most common theoretical conceptualiza
tion of relationship strength defines strong ties as emotionally 
close relationships characterized by frequent interactions; this 
perspective and common empirical operationalization, based on 
interaction intensity, is the most typical measurement of social 
relationship capital at the dyadic level (17–22, 27) and underpins 
theories of interpersonal relationships (19–21), human cooper
ation (23, 24), labor economics (17, 18, 27), information diffusion 
(25), and social influence (26). Accordingly, one might expect dis
aster victims to also first communicate with their strongest ties. 
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However, we find that the social ties with the highest tie strength 
during normal times often were not the most important tie during 
the disaster. We show that whether a social tie is prioritized dur
ing emergency also depends on the interaction between a rela
tionship’s dyadic intensity and its structural embeddedness 
with other relationships in the ego network.

Whereas previous research has considered tie strength and 
embeddedness to be alternative measures of relationship 
strength (19, 26), there is less understanding in how they interact 
to jointly predict social behavior or relationship importance. We 
find that although tie strength and embeddedness are highly cor
related, both with each other and also with tie importance (and 
reciprocity and family membership), they do not fully overlap. 
The differing interaction effects across our models (and for differ
ent dependent variables) show that their relationship is complex 
and context dependent. This point is also illustrated by differen
ces in the decision tree models (Figs. S12–S14); although tie 
strength and embeddedness appear together in the traversal 
paths, the parent nodes differ across different contexts.

A unifying theme across all of our model results is that tie 
strength and embeddedness have a moderating relationship on 
one another. In the case of predicting whether the important tie 
is a family member, Fig. 1d visually illustrates (and simplifies) 
the significant interaction effect of Table 3. Here, we find that 
the embeddedness of important ties is a necessary condition for 
tie strength to have any predictive power at all. In other words, 
tie strength has no predictive power if it is not embedded. In an
other less extreme case, Fig. 1c shows that although tie strength 
predicts temporal latency, the distribution of the relationship dif
fers for embedded versus nonembedded ties. Overall, the inter
action effect of embeddedness and tie strength has an opposite 
direction to their main effects, which implies that (un-)embedded
ness has a constraining effect on tie strength and also that weak 
ties can be more important when embedded.

The moderating effect of embeddedness on tie strength has im
plications for interpreting the theoretical relationship between re
lational and structural embeddedness. In providing an initial 
definition of tie strength and structural embeddedness, 

Fig. 4. Predicting temporal latency of network activation. a–d) First to fourth outgoing calls, respectively. Greater tie strength and embeddedness both 
correspond to faster latency. The heat map represents the tradeoff between tie strength and embeddedness; one cannot fully substitute the other, i.e. 
important ties with high (low) tie strength and low (high) embeddedness; social ties suffer relatively greater latency than important ties with balanced tie 
strength and embeddedness. An interaction effect can be observed from the slight kink in the heat map, which denotes the “sweet-spot” for fastest 
latency (social ties with tie strength of ∼50 and embeddedness of ∼10–20).
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Granovetter originally remarked that “the degree of overlap of two 
individuals’ friendship networks varies directly with the strength 
of their tie to one another” (7). This basic idea also explains why 
during the social process of network formation, people with 
strong ties are more likely to have more common friends [from 
sharing more foci of activities with one another (30)] and vice ver
sa. Our results bring empirical findings, which had hitherto largely 
separated tie strength and embeddedness, full circle to show that 
dyadic ties need to be embedded within other shared relationships 
in order for tie strength to be meaningful (at least during 
emergencies).

Central to our analyses is the use of a quasi-experimental con
text, where behavioral patterns are themselves meaningful, to 
create behaviorally inferred measures of relationship strength, 
for example, rank choice of social preference (i.e. tie importance), 
temporal urgency, and social reciprocity. Our research approach 
highlights the value of using nonregular events—such as natural 
disasters—to unveil features and relationships in social networks 
that are latent during normal times. We make a methodological 
contribution by demonstrating the potential for using behavior 
during such contexts (when victims may mobilize their social 
and relationship capital) to measure and benchmark constructs 

Table 2. Impact of tie strength and embeddedness on reciprocity.

Dependent variable = p(reciprocal call) Coef. Robust SE z P > |z|

Tie strength of important tie 0.1594 0.007 24.37 <0.001 ***
Embeddedness (OP) of important tie 0.3206 0.025 12.73 <0.001 ***
Earthquake intensity dummy (1 = severe) −0.3117 0.329 −0.95 0.343
Tie strength*embeddedness (OP) of important tie −0.0198 0.010 −1.91 0.056
Tie strength*earthquake intensity dummy 0.0139 0.011 1.31 0.189
Embeddedness (OP) of important tie*earthquake intensity dummy 0.0318 0.039 0.82 0.414
Tie strength*embeddedness (OP) of important tie*earthquake intensity dummy −0.0369 0.016 −2.28 0.023 *
Important tie is family dummy 0.4749 0.016 29.01 <0.001 ***
Family plan size (1 to 5) −0.0559 0.006 −9.38 <0.001 ***
Degree centrality of ego −0.0033 <0.001 −8.61 <0.001 ***
Total call frequency of ego −0.0003 <0.001 −5.45 <0.001 ***
Total text frequency of ego −0.0001 <0.001 −1.26 0.208
Internet usage frequency of ego <0.0001 <0.001 −0.10 0.918
Total WeChat usage frequency of ego −0.0001 <0.001 −0.74 0.459
Total usage frequency of other instant messaging of ego <0.0001 <0.001 −0.60 0.547
Smartphone dummy (1 = smartphone user) −0.0186 0.012 −1.52 0.129
Roaming dummy (1 = traveling outside of prefecture) 0.0747 0.017 4.46 <0.001 ***
Rural dummy (1 = rural) 0.0210 0.020 1.05 0.294
Damage dummy (1 = cell towers damaged) −0.1748 0.282 −0.62 0.535
Constant −0.9365 0.206 −4.54 <0.001 ***
Pseudo R-squared: 0.0915
Number of obs = 91,839

Probit model. Communications variables are average monthly data from 4 weeks before the earthquake. Fixed effects for 159 counties are included. To address the 
potential quasi-complete separation problem between the dependent variable and these two key independent variables, we categorize tie strength into five ordered 
intervals which contain similar number of data points, which are 0, (1, 10), (11, 20), (21, 30), and 31 or above, and categorize embeddedness as 0 or 1 (when 
embeddedness is larger than 0). 
***P < .001, **P < .01, *P < .05.

Table 3. Predicting if the first outgoing call after earthquake is to family.

Dependent variable = p(important tie is family plan member) Coef. Robust SE z P > |z|

Tie strength of important tie 0.0143 <0.001 40.39 <0.001 ***
Embeddedness (OP) of important tie 0.1497 0.003 44.33 <0.001 ***
Earthquake intensity dummy (1 = severe) −0.7847 0.496 −1.58 0.114
Tie strength*embeddedness of important tie −0.0007 <0.001 −17.05 <0.001 ***
Tie strength*earthquake intensity dummy 0.0025 0.001 4.60 <0.001 ***
Embeddedness (OP) of important tie*earthquake intensity dummy −0.0420 0.005 −8.56 <0.001 ***
Tie strength*embeddedness (OP) of important tie*earthquake intensity dummy 0.0002 <0.001 3.03 0.002 **
Family plan size (1 to 5) 0.2168 0.009 25.14 <0.001 ***
Degree centrality of ego <0.0001 <0.001 −0.04 0.969
Total call frequency of ego −0.0014 <0.001 −23.34 <0.001 ***
Smartphone dummy (1 = smartphone user) −0.0002 <0.001 −4.41 <0.001 ***
Internet usage frequency of ego <0.0001 <0.001 −1.14 0.253
Total WeChat usage frequency of ego <0.0001 <0.001 −0.08 0.937
Total usage frequency of other instant messaging of ego <0.0001 <0.001 −0.58 0.564
Smartphone dummy (1 = smartphone user) −0.0538 0.014 −3.85 <0.001 ***
Roaming dummy (1 = traveling outside of prefecture) 0.3021 0.019 16.25 <0.001 ***
Rural dummy (1 = rural) 0.0381 0.024 1.59 0.111
Damage dummy (1 = cell towers damaged) 0.5442 0.429 1.27 0.205
Constant −1.6370 0.307 −5.34 <0.001 ***
Pseudo R-squared: 0.2148
Number of obs = 54,857

Probit model. Communications variables are average monthly data from 4 weeks before the earthquake. Fixed effects for 159 counties are included. 
***P < .001, **P < .01, *P < .05.
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such as relationship strength. Although we recognize that using 
measures such as communications frequency to infer relation
ship strength is a matter of practicality, we hope to illuminate 
the limitations of relying purely on historical behavioral fre
quency to predict the state of existent relationships (or future be
haviors), without sufficiently considering social context. Future 
research can consider other special situations (for example, holi
days or job loss) that may reveal relationship ground truths and 
the mechanistic complexities underlying social relationships. 
Future research can also explore the differences between behav
ioral and frequency measures; for example, we find that the stat
istical properties of revealed social tie importance do not fully 
correspond to frequency-based measures of tie strength, which 
have exponential decay rather than linear relationships with 
each other.

Given that social network data is often temporal (e.g. with time 
stamps) and spatial (e.g. cell tower location), future research may 
also investigate the temporal–spatial characteristics of emer
gency communications for the entire macronetwork to under
stand how collective behavior evolves in disaster contexts. Such 
analyses, if linked to recovery outcomes, may reveal how 
individual-level relationship capital aggregates across space and 
time to provide macrolevel social capital (22), which can abet so
ciety’s recovery from negative shocks.

Our also research provides insights on the social network 
foundations of social resilience to disaster. Although weak 
ties have been proposed to provide structural interconnectiv
ity (and resilience) in networks by embedding disparate com
munities (17–19, 27), our results show that the backbone 
network of important ties is sufficient to span the disparate 
towns and villages of the stricken prefecture. Conceptually, 
this raises questions as to whether there is necessarily always 
a tradeoff between relationship strength and reach across a 
network (e.g. the relationship between relationship strength 
and information diffusion). Part of the puzzle may lie in the 
motivation of different types of ties to communicate, seek in
formation, and provide support during an emergency context 
(as opposed to diffusing information about job prospects). 
Our results also suggest that there may be a difference be
tween “normal” social capital (that is deployed in normal, 
nonemergency contexts) and the resilient, emotionally 
strong social capital that is tapped during emergencies. 
Understanding the conceptual and actual basis of social cap
ital in response to disasters has important implications for 
public policy as communities that have more social capital 
(built from community members’ social ties) typically recover 
faster after disasters, a finding observed in both the developed 
and developing worlds (4, 5, 9).

Materials and methods
Data
We used 3 months of anonymized individual-level telecommuni
cations records (2013 March 1 to May 31) of 91,839 active subscrib
ers of a major Chinese mobile telecommunications carrier, who 
were registered locally in the Ya’an region of Sichuan (see 
Table S2 for geographical information). A total of 95.7% of sub
scribers in the data set subscribed to a broadband or landline tele
phone service; associated addresses were thus unlikely to have 
been fraudulent. The data included time-stamped records of 
individuals’ voice calls, text messages (SMS), mobile internet us
age, mobility (tower access), demographics, and customer data 

(e.g. phone model, spending, and family plan membership) (see 
Table S1 for summary statistics). Overall, 54,857 users in the 
data set were in family plans (19,305 are in 2-person plans; 
28,038 are in 3-person plans). The earthquake occurred at 08:02 
AM on 2013 April 20. Most preearthquake social network variables 
(e.g. tie strength or embeddedness during normal times) were cal
culated from March 2013 data. See Supplementary Material 
Section 1 for checks on impact of WeChat adoption, which did 
not affect voice call usage and the validity of our operationaliza
tions (based on voice call data).

Statistical models

Model 1: effect of tie strength and embeddedness on activation 
latency of social network
Model 1 explores how tie strength and embeddedness affects la
tency of social network activation. Since the dependent variable 
is a count variable (hours), we use a Poisson regression.

Model 1.1 is the baseline model:

E(yi|Xi)

= exp(α1Tiei + α2Embeddednessi + α3Tiei · Embeddednessi + Ciβ), 

where yi is latency (hours) for individual i; Xi is a vector of inde
pendent variables including our key explanatory variables, 
Tiei and Embeddednessi; and Ci is a vector of control variables. 
Tiei and Embeddednessi are the tie strength and embeddedness, 
respectively, between individual i and the activated social tie. Ci 

includes family plan member dummy, the ego’s family size (num
ber of family plan members), degree centrality, previous call fre
quency, text frequency, internet usage frequency, WeChat 
usage frequency, instant messaging (other than WeChat) usage 
frequency, smartphone use dummy, roaming (out of town) during 
earthquake dummy, rural address dummy, local cell tower dam
age dummy, and 159 county fixed effects.

The same model specifications are used in various robustness 
checks including when we use rank percentile as an alternative 
measurement for tie strength, only include roaming users, or 
predict temporal latency of second, third, and fourth calls 
(Tables S3–S12).

Model 1.2 is similar to Model 1.1 but also includes two-way 
interaction terms between the “severe” earthquake group dummy 
with tie strength and embeddedness, as well as a three-way inter
action term:

E(yi|Xi) = exp(α1Tiei + α2Embeddednessi + α3Severei

+ α4Tiei · Embeddednessi

+ α5Tiei · Severei + α6Embeddednessi · Severei

+ α7Tiei · Embeddednessi · Severei + Ciβ), 

where Tiei, Embeddednessi, and Ci are the same variables as in 
Model 1.1. Severei is a dummy variable indicating whether indi
vidual i belongs to the “severe” earthquake group (1 = yes). α7 is 
the key parameter of interest which measures whether the inter
action effect between tie strength and embeddedness (on social 
network activation latency) significantly varies across the two dif
ferent earthquake intensity groups. We use the same model spec
ifications to predict latency of second, third, and fourth calls 
(Tables S6–S12).

Model 2: effect of tie strength and embeddedness on social 
reciprocity
Model 2 examines how tie strength and embeddedness affect so
cial reciprocity, i.e. whether an ego receives a call back. We use 
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a probit model to account for the dichotomous dependent vari
able. Model 2.1 is the baseline model:

Pr(Reciprocityi = 1|Xi) = Φ(α1Tiei + α2Embeddednessi + α3Severei

+ α4Tiei · Embeddednessi · Severei + Ciβ).

Model 2.2 also includes the earthquake intensity interaction 
terms:

Pr(Reciprocityi = 1|Xi) = Φ(α1Tiei + α2Embeddednessi + α3Severei

+ α4Tiei · Embeddednessi + α5Tiei · Severei

+ α6Embeddednessi · Severei

+ α7Tiei · Embeddednessi · Severei + Ciβ), 

where Reciprocityi is a dummy variable indicating whether indi
vidual i receives subsequent call from the social tie they called 
(1 = yes). Xi, Tiei, Embeddednessi, and Ci are the same variables 
as defined in Model 1. Φ is the cumulative density function of 
the standard normal distribution.

Model 3: effect of tie strength and embeddedness on family tie 
activation
We use a probit model to predict probability an ego first calls a 
family plan member or not after the earthquake. Model 3.1 is 
the baseline model:

Pr(Familyi = 1|Xi) = Φ(α1Tiei + α2Embeddednessi + α3Severei

+ α4Tiei · Embeddednessi · Severei + Ciβ).

Model 3.2 includes the earthquake intensity interaction terms:

Pr(Familyi = 1|Xi)=Φ(α1Tiei + α2Embeddednessi + α3Severei

+ α4Tiei · Embeddednessi + α5Tiei · Severei

+ α6Embeddednessi · Severei

+ α7Tiei · Embeddednessi · Severei

+ Ciβ), 

where Familyi is a dummy variable indicating whether individual i 
activates family social support (1 = yes) in the aftermath of earth
quake. Xi, Tiei, Embeddednessi, and Ci are the same variables as 
defined in Model 1. Φ is the cumulative distribution function of 
the standard normal distribution.

Acknowledgments
We are grateful to M. Granovetter for his help and guidance in 
early iterations of this research. We thank our research assistants 
Y. Ning, H. Xu, and Y. Yuan for their technical support with data 
preparation.

Supplementary Material
Supplementary material is available at PNAS Nexus online.

Funding
J.S.J. is supported by the Research Grants Council of Hong Kong 
(C7105-20G, 14505217, and 17506316). J.J. is supported by the 
National Natural Science Foundation of China (72074072, 
72042009, and 72332004) and the Guangdong Provincial Key 
Laboratory of Future Networks of Intelligence (grant no. 
2022B1212010001). Y.L. is supported by the Research Grants 
Council of Hong Kong (13503323) and the Lam Woo Research 
Fund at Lingnan University (LWP20020).

Author Contributions
J.S.J. and Y.L. conceived and contributed equally to the research. 
J.S.J., J.J., Y.L., and N.A.C. contributed to conceptual development 
and research design. Y.L., J.J., S.L., and J.S.J. analyzed the data. J.J., 
Y.L., and S.L. prepared visualizations. J.S.J. wrote the paper, and 
J.S.J. and N.A.C. revised the paper.

Data Availability
Our contract with the telecom carrier prevents us from sharing 
the full telecommunications data set publicly. Sample data and 
aggregated statistics for replication and academic research pur
poses are available from the corresponding author (jmjia@cuhk. 
edu.cn) on reasonable request.

Data Protection and Human Subjects 
Approval
The data were provided by a major Chinese telecommunications 
carrier under a confidential agreement. All personal data were 
anonymized into unique IDs for analysis. Ethical approval to use 
anonymized individual-level telecom data for academic research 
is granted by the Human Research Ethics Committee of the 
University of Hong Kong (EA1912107).

References
1 Butzer KW. 2012. Collapse, environment, and society. Proc Natl 

Acad Sci U S A. 109:3632–3639.
2 Centre for Research on the Epidemiology of Disasters, UN Office 

for Disaster Risk Reduction. 2020. Human cost of disasters: an 

overview of the last 20 years 2000–2019. Retrieved from https:// 
cred.be/sites/default/files/CredCrunch61-Humancost.pdf

3 Weber EU. 2006. Experience-based and description-based per
ceptions of long-term risk: why global warming does not scare 
us (yet). Clim Change. 77:103–120.

4 Aldrich DP. 2012. Building resilience: social capital in post-disaster re
covery. Chicago (IL): University Chicago Press.

5 Nakagawa Y, Shaw R. 2004. Social capital: a missing link to disas
ter recovery. Int J Mass Emerg Disasters. 22:5–34.

6 Jia JS, Li Y, Lu X, Jia J, Christakis NA. 2021. Triadic embeddedness 
structure in family networks predicts mobile communication re
sponse to a sudden natural disaster. Nat Commun. 12:4286.

7 Jia JS, Jia J, Hsee CK, Shiv B. 2017. The role of hedonic behavior in 
reducing perceived risk: evidence from postearthquake 
mobile-app data. Psycholog Sci. 28(1):23–35.

8 Cohen S, Wills TA. 1985. Stress, social support, and the buffering 
hypothesis. Psycholog Bull. 98:310–357.

9 Liu W, et al. 2022. The role of human and social capital in earth
quake recovery in Nepal. Nat Sustain. 5:167–173.

10 Blumenstock JE, Eagle N, Fafchamps M. 2016. Airtime transfers 
and mobile communications: evidence in the aftermath of nat
ural disasters. J Dev Econ. 120:157–181.

11 Bagrow JP, Wang D, Barabasi A-L. 2011. Collective response of hu
man populations to large scale emergencies. PLoS One 6(3): 

e17680.
12 Gao L, et al. 2014. Quantifying information flow during emergen

cies. Sci Rep. 4:3997.
13 Phan TQ, Airoldi EM. 2015. A natural experiment of social net

work formation and dynamics. Proc Natl Acad Sci U S A. 112: 
6595–6600.

Jia et al. | 11
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/2/11/pgad358/7336927 by Yale U
niversity School of M

edicine user on 22 April 2024

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad358#supplementary-data
mailto:jmjia@cuhk.edu.cn
mailto:jmjia@cuhk.edu.cn
https://cred.be/sites/default/files/CredCrunch61-Humancost.pdf
https://cred.be/sites/default/files/CredCrunch61-Humancost.pdf


14 Lu X, Bengtsson L, Holme P. 2012. Predictability of population dis
placement after the 2010 Haiti earthquake. Proc Natl Acad Sci U S 
A. 109:11576–11581.

15 Tai XH, Mehra S, Blumenstock JE. 2022. Mobile phone data reveal 
the effects of violence on internal displacement in Afghanistan. 
Nat Hum Beh. 6:624–634.

16 Samuelson PA. 1938. Note on the pure theory of consumers’ be
havior. Econometrica 5:61–71.

17 Granovetter M. 1973. The strength of weak ties. Am J Sociol. 78: 
1360–1380.

18 Rajkumar K, et al. 2022. A causal test of the strength of weak ties. 
Science 377(6612):1304–1310.

19 Onnela JP, et al. 2007. Structure and tie strengths in mobile com
munication networks. Proc Natl Acad Sci U S A. 104(18):7332–7336.

20 Jones JJ, et al. 2013. Inferring tie strength from online directed be
havior. PLoS One 8(1):e52168.

21 Saramäkia J, et al. 2014. Persistence of social signatures in human 
communication. Proc Natl Acad Sci U S A. 111(3):942–947.

22 Chetty R, et al. 2022. Social capital I: measurement and associa
tions with economic mobility. Nature 608:108–121.

23 Apicella CL, Marlowe FW, Fowler JH, Christakis NA. 2012. Social 
networks and cooperation in hunter-gatherers. Nature 
481(7382):497–501.

24 Rand DG, Arbesman S, Christakis NA. 2011. Dynamic social net
works promote cooperation in experiments with humans. Proc 
Natl Acad Sci U S A. 108(48):19193–19198.

25 Park PS, Blumenstock JE, Macy MW. 2018. The strength of long- 
range ties in population-scale social networks. Science 
362(6421):1410–1413.

26 Aral S, Walker D. 2014. Tie strength, embeddedness, and social 

influence: a large-scale networked experiment. Manage Sci. 60: 
1352–1370.

27 Granovetter M. 1992. Problems of explanation in economic soci
ology. Networks and organizations: Structure, form, and action, 
25–56.

28 Moran P. 2005. Structural vs. relational embeddedness: social 
capital and managerial performance. Strateg Manage J. 26(12): 
1129–1151.

29 Easly D, Kleinberg J. 2010. Networks, crowds, and markets. 
Cambridge UK: Cambridge University Press.

30 Coleman JS. 1990. Foundations of social theory. Cambridge, MA: Bel- 
knap Press of Harvard University Press.

31 Feld S. 1997. Structural embeddedness and stability of interper
sonal relations. Soc Networks. 19(1):91–95.

32 Shakya HB, Christakis NA, Fowler JH. 2015. Social network pre
dictors of latrine ownership in India. Soc Sci Med. 125:129–138.

33 Uzzi B. 1997. Social structure and competition in interfirm net
works: the paradox of embeddedness. Admin Sci Quarterly. 42(1): 
35–67.

34 Jackson MO, Rodriguez-Barraquer T, Tan X. 2012. Social capital 
and social quilts: network patterns of favor exchange. Am Econ 
Rev. 102:1857–1897.

35 Kossinets G, Watts DJ. 2006. Empirical analysis of an evolving so
cial network. Science 311:88–90.

36 Van de Rijt A, Buskens V. 2006. Trust in intimate relationships: 
the increased importance of embeddedness for marriage in the 
United States. Ration Soc. 18(2):123–156.

37 Kim S, Skvoretz J. 2013. Structural embeddedness, uncertainty, 
and international trade. Int J Comp Soc. 54(2):124–143.

38 Polidoro F Jr, Ahuja G, Mitchell W. 2011. When the social struc
ture overshadows competitive incentives: the effects of network 
embeddedness on joint venture dissolution. Acad Manage J. 54(1): 
203–223.

39 Eagle N, Pentland A, Lazer D. 2009. Inferring friendship network 
structure using mobile phone data. Proc Natl Acad Sci U S A. 
106(36):15274–15278.

40 Procidano ME, Heller K. 1983. Measures of perceived social sup
port from friends and from family: three validation studies. Am 
J Commun Pyschol. 11:1–24.

41 Marsden PV, Campbell KE. 1984. Measuring tie strength. Soc 
Forces. 63:482–501.

42 Dunbar RIM, Spoors M. 1995. Social networks, support cliques, 

and kinship. Hum Nature. 6(3):273–290.
43 Roberts SBG, Dunbar RIM. 2011. Communication in social net

works: effects of kinship, network size and emotional closeness. 
Pers Relationship. 18:439–445.

44 Shor E, Roelfs D, Yogev T. 2013. The strength of family ties: a 
meta-analysis and meta-regression of self-reported social sup
port and mortality. Soc Networks. 35:626–638.

45 Coleman JS. 1988. Social capital in the creation of human capital. 
Am J Sociol. 94:S95–S120.

46 Shirado H, Crawford FW, Christakis NA. 2020. Collective commu
nication and behaviour in response to uncertain ‘danger’ in net
work experiments. Proc R Soc A. 476(2237):20190685.

12 | PNAS Nexus, 2023, Vol. 2, No. 11

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/2/11/pgad358/7336927 by Yale U

niversity School of M
edicine user on 22 April 2024


	Emergency communications after earthquake reveal social network backbone of important ties
	Introduction
	Conceptual background
	Measures
	Important ties
	Network activation latency
	Immediate reciprocity
	Family membership

	Results
	Exploratory analysis
	Robustness check for inbound communications
	Hierarchical network of important ties
	Statistical models
	Model 1: activation latency
	Model 1 robustness checks
	Model 2: immediate reciprocity
	Model 3: activation of family ties

	Roaming and internet robustness check
	WeChat robustness check
	Replication using decision trees

	Discussion
	Materials and methods
	Data
	Statistical models
	Model 1: effect of tie strength and embeddedness on activation latency of social network
	Model 2: effect of tie strength and embeddedness on social reciprocity
	Model 3: effect of tie strength and embeddedness on family tie activation


	Acknowledgments
	Supplementary Material
	Funding
	Author Contributions
	Data Availability
	Data Protection and Human Subjects Approval
	References




