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Mass gatherings for political expression had 
no discernible association with the local 
course of the COVID-19 pandemic in the USA 
in 2020 and 2021

Eric Feltham    1,2 , Laura Forastiere    1,3, Marcus Alexander1,4 & 
Nicholas A. Christakis    1,2,5,6

Epidemic disease can spread during mass gatherings. We assessed the 
impact of a type of mass gathering about which comprehensive data were 
available on the local-area trajectory of the COVID-19 epidemic. Here we 
examined five types of political event in 2020 and 2021: the US primary 
elections, the US Senate special election in Georgia, the gubernatorial 
elections in New Jersey and Virginia, Donald Trump’s political rallies and the 
Black Lives Matter protests. Our study period encompassed over 700 such 
mass gatherings during multiple phases of the pandemic. We used data from 
the 48 contiguous states, representing 3,108 counties, and we implemented 
a novel extension of a recently developed non-parametric, generalized 
difference-in-difference estimator with a (high-quality) matching procedure 
for panel data to estimate the average effect of the gatherings on local 
mortality and other outcomes. There were no statistically significant 
increases in cases, deaths or a measure of epidemic transmissibility (Rt) 
in a 40-day period following large-scale political activities. We estimated 
small and statistically non-significant effects, corresponding to an average 
difference of −0.0567 deaths (95% CI = −0.319, 0.162) and 8.275 cases (95% 
CI = −1.383, 20.7) on each day for counties that held mass gatherings for 
political expression compared to matched control counties. In sum, there is 
no statistical evidence of a material increase in local COVID-19 deaths, cases 
or transmissibility after mass gatherings for political expression during 
the first 2 years of the pandemic in the USA. This may relate to the specific 
manner in which such activities are typically conducted.

Coronavirus disease 2019 (COVID-19), like any serious outbreak of a 
contagious disease, can place the virtues of public health and civic 
engagement—in the form of mass gatherings—into direct conflict1. 
Indeed, epidemics pose an especially difficult problem for the politi-
cal process, which relies on an active and engaged citizenry so that 

the public may hold their leaders accountable for policies enacted to 
manage the epidemic in the first place. Even if the will of the major-
ity is aligned with the public interest of most effectively containing, 
mitigating and recovering from an epidemic, political participation is 
often necessary to enact the majority’s preferences. Yet, when citizens 
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functioning of democracy and are important in their own right from a 
public health perspective. Moreover, it is possible to comprehensively 
enumerate certain types of political mass gathering and to assemble 
data about them. We thus examine political gatherings both because 
it is possible to collect complete data on such gatherings and because 
of their special importance.

Results
Methodology summary
We assembled a complete dataset of essentially all mass gatherings 
of particular types for a 2-year period (see Methods for data availabil-
ity). We examined the impact of five different sorts of major politi-
cal events on the spread of COVID-19 in the USA, in the period from  
17 March 2020 to 2 November 2021: the US primary elections (17 March 
2020 to 11 August 2020); the Georgia (GA) special election (5 January 
2021); the gubernatorial elections in New Jersey (NJ) and Virginia (VA) 
(2 November 2021); Trump’s 2020 campaign rallies (6 June 2020 to 2 
November 2020); and the BLM protests (Summer 2020).

We covered every state-wide election over our whole study 
period in which there was a substantial amount of in-person voting 
(and excluded the national general election on 3 November 2020). 
We included 100% of the official Trump rallies (67 events). For the BLM 
protests, we specifically examined 100% of the large-scale protests in 
the time period considered—a total of 658 county-level events with a 
crowd of at least 800 persons, of which 94% are directly linked to the 
BLM movement. The events we studied thus span the types of political 
activity engaged in by the public, the geographic area of the USA and the 
various phases of the epidemic, ranging from its early onset in March 
2020, the second wave over the summer of 2020, the peak of the third 
wave in January 2021 and the fourth wave in 2021, in which the Delta 
variant became the dominant strain in the USA.

The preponderance of studies that examine the effectiveness of 
various NPIs and the impact of in-person gatherings on the spread of the 
SARS-CoV-2 virus so far only consider the Alpha variant21,22. However, 
the Delta variant was found to be between 40–80% more infectious than 
the initial strain23,24 and caused a marked increase in hospitalizations 
and deaths, despite the increasing administration of vaccines by the 
time it emerged25. The increased transmissibility of new variants may 
fundamentally alter the relative effectiveness of various NPIs, including 
the banning of mass gatherings. Therefore, we included in our analysis 
events that took place in late 2021 to examine the impact of the same 
type of event under different predominant strains of the virus. Fur-
thermore, our analyses are naturally stratified by vaccine period. In the 
USA, the first vaccines were administered to the public on 14 December 
202026. The 2020 primary elections, the BLM protests and the Trump 
campaign rallies all predate the vaccine rollout in the USA (the last rally 
in our data was held on 2 November 2020). Similarly, the GA special 
election took place on 5 January 2021, at which time under 1% of the 
population in the state of GA had their first vaccine dose. By contrast, 
the NJ and VA gubernatorial elections were held when 64 and 62% of 
those states’ populations had complete vaccine series (two doses of a 
two-dose vaccine, or one dose of a single-dose vaccine), respectively27.

Modelling the spread of COVID-19 is particularly challenging for 
two major reasons. The first relates to the quality of the underlying 
data, which can be incomplete or noisy. The USA has struggled to test 
an adequate number of individuals and, especially early on, there were 
not enough tests to adequately track the number of cases. Many of the 
mass gatherings in our data occurred during a rapid increase in the 
number of tests administered (see Supplementary Fig. 1), which also 
occurred unevenly across US counties. Moreover, testing relies on the 
interest and ability of individuals to get tested and of institutions to test 
them. Consequently, there was substantial variation in testing capac-
ity and rates at the county level, as well as over time28. Furthermore, 
given that 66% of registered voters reported being at least somewhat 
concerned about the safety of voting in a March 2020 survey29 and 

gather in person, participation itself can contribute to a worsening of 
the epidemic. Both from a public health perspective and an individual 
point-of-view, the question arises whether in-person mass gatherings, 
in particular for political purposes, are safe.

In the spring of 2020, the USA was in the midst of its presidential 
primary elections when the COVID-19 pandemic began in earnest. 
Concerns immediately arose about the potential of in-person voting 
to lead to a rise in community transmission of the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) virus, making elections into 
potential super-spreader events with the adverse consequence of 
otherwise-preventable excess deaths in communities across the USA. 
Furthermore, election procedures themselves became a partisan issue 
under COVID-192,3, with some Democrats attempting to signal a com-
mitment to public health by avoiding the polls, and some Republicans 
signalling defiance of COVID-19 by showing up in person. COVID-19 
sparked a partisan uproar over postponing primaries and mail-in vot-
ing, reaching its zenith with the Wisconsin Supreme Court battle4, 
where a Republican effort blocked an attempt by Governor Tony Evers, 
a Democrat, to reschedule the primary election, given his public health 
concerns. By November 2020, Dr Anthony Fauci, the then-director of 
the National Institute of Allergy and Infectious Diseases, had stated 
that in-person voting was likely to be safe, so long as social distancing 
measures are in place5.

In addition to the primary elections, which were held in the spring 
of 2020 in all 50 states, former President Donald Trump held 67 politi-
cal rallies in 15 states across the country during the 2020 election sea-
son. The Trump rallies were anticipated to cause a surge in COVID-19  
and were among the largest events held in the USA at the time6, draw-
ing between hundreds and thousands of people7. The USA also saw 
a surge in large protests for racial justice in the summer of 2020 
and sporadically thereafter. The ‘Black Lives Matter’ (BLM) protests  
(of which there were hundreds) have been characterized as the largest 
concerted protest movement in US history8, and cities and towns across 
the country saw demonstrations ranging in size from tens to hundreds 
of thousands of people. Early on, some experts worried that the BLM 
protests were a risk for increasing COVID-19 transmission while the 
USA was in the middle of its second wave of the epidemic9. At the same 
time, over 1,000 public health workers controversially signed a letter 
that minimized the health risks of participating in the protests, arguing 
that the political issue of racial justice outweighed any public health 
risks from COVID-1910,11.

Political activities as a type of mass gathering during the COVID-19 
pandemic were a contentious issue and pressing policy problem around 
the world. For instance, in late 2021, a wave of teachers were reported to 
have tested positive and died subsequent to working at the polls in India12, 
and Argentina decided to push back its 2021 midterm elections, while 
nine countries in Latin America held other elections in 202113. Leaders 
around the globe decided whether to carry out or postpone their upcom-
ing elections and wrestle with rules for voting14–17. In addition, large 
protests continue around the world in places where the pandemic was 
ongoing, including in India, Colombia, Cuba and others (Global Protest 
Tracker, https://carnegieendowment.org/publications/interactive/
protest-tracker). Cuba had a record-breaking number of daily COVID-19  
deaths around the time of its protests18. In India, the government has 
urged the dissolution of large-scale protests, citing the dangers of 
COVID-19 transmission19. In Russia in February and March 2022, anti-war 
protests were banned and COVID-19 was used as the justification20. In 
most of these places, powerful vaccines remain scarce and traditional 
non-pharmaceutical interventions (NPIs) (including a ban on mass gath-
erings) were the primary strategy to mitigate the spread of COVID-19.

Political activities are thus an important subset of mass gather-
ings that have occurred during the COVID-19 pandemic, with some 
properties that distinguish them from concerts, sporting events or 
other gatherings marked by more sustained or intimate or indoor 
contact. Still, the political gatherings studied here are crucial to the 
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evidence that individuals may have altered their behaviour in response 
to the BLM protests30, it is plausible that testing may be endogenous 
to treatment; that is, individuals in counties that held political events 
may have been more likely to seek testing, thus potentially inducing 
bias in the outcomes measured across counties. Consequently, to track 
the course of the epidemic, we primarily focused on (more accurate) 
‘mortality’ data, using both death counts and rates. However, we also 
explored other outcomes, including case rates, virus transmissibility 
(Rt) (from an epidemiological model tailored to COVID-19)31–33 and 
mobility (based on mobile phone data).

Second, many of the available statistical tools make assumptions 
that are not appropriate to modelling the spread of a virus34. Con-
sequently, we developed and applied a non-parametric generalized 
difference-in-differences estimator for panel data35 to account for the 
nonlinear epidemic curve, with a matching procedure at the county 
level (see Methods for methodological details and code availability). We 
made use of county-level data, as they are the most granular COVID-19 
data widely available in the USA, affording the best possible means to 
track changes in the spread of the virus. For each timepoint (day), we 
matched ‘treated’ counties (that had a political gathering) with multi-
ple ‘control’ counties (that did not have any political gathering during 
a sufficiently long time window) that had similar socio-demographic 
characteristics and similar dynamics of the epidemic before and up to 
the time of the ‘treatment’.

Crucially, to capture the epidemic characteristics, we matched 
on the county-level cumulative death rate and also the date of the first 
reported case in a county. We selected, at most, the five best matches 
to a treated county as the basis for comparison, which is a widely used 
strategy for methods with multiple matches36. Calipers were applied 
individually to specific matching covariates as needed to ensure that 
covariate (im)balance remains below 0.1, on average, over the match-
ing period. Consequently, fewer than five matches were used when a 
match was of poor quality. Treated observations were dropped from 
the analysis if they had no good-quality matches. Supplementary  
Fig. 2 displays the distribution of the number of matches for the main 
analyses; see Supplementary Information (Section 3) for details on 
the numbers of matches and treated units for each model presented. 
In addition, we present the results for each analysis before refining 
the matches to, at most, the best five, presented in Supplementary 
Information Section 3. Indeed, we conducted a broad variety of robust-
ness checks regarding the quality of this matching (see Methods and 
Supplementary Information Section 2 for further details); we present 
robustness results with varying caliper widths, pre-outcome-window 
results and different matching covariate specifications.

Our approach extends a statistical approach that has been recently 
introduced and validated35. In particular, we define different ‘causal’ 
parameters that are more meaningful for this setting and implement 
a sliding time window to find matches for units that can be considered 
‘treated’ at each timepoint (see Methods). This approach avoids certain 
limitations in other methods previously applied to assess the effect of 
mass gatherings on the spread of COVID-19 whose assumptions may 
not be well met in this setting37,38. The present approach may be applied 
in any setting governed by a nonlinear contagion process, whether 
the ‘treatment’ occurs in a limited time frame, is repeated over time 
(time-varying treatment) or varies across the population.

Furthermore, each of the event types we analysed presents dif-
ferent challenges that benefit from alteration of our estimation pro-
cedure; in the case of the Trump rallies, for instance, we assumed the 
presence of geographic spillover effects39, and in the case of the BLM 
rallies, we had many units with multiple treatment-like protests within 
a narrow window of time.

We measured the average effect of an event on the observations 
where the event actually occurred (the so-called ‘average treatment 
effect on the treated’ or ATT) by comparing the change in outcome 
over time across matched units in different treatment and control 

groups. The difference-in-differences strategy requires that, in the 
absence of the event, the outcome would have followed the same 
trend in the treated and control arms. Nonetheless, our approach 
makes less stringent assumptions than many traditional approaches 
for the estimation of causal effects with panel data35. As opposed to the 
standard difference-in-differences estimator, this method relies on a 
parallel trend assumption only after conditioning on both baseline 
and time-varying covariates before the intervention, including the 
pre-treatment outcome history.

Covariate adjustment was conducted using a matching procedure 
whereby the five best matches were selected and used for each treated 
county (see Methods for details). For each model, the quality of the 
five best matches was examined with reference to a balance score, 
calculated on the basis of the standardized distance between a matched 
unit and its best matches in terms of covariate similarity. In each case, 
acceptable balance scores were obtained on average for each matching 
covariate (see Methods and Supplementary Information Section 2 for 
detailed reporting on match quality for each analysis). This approach 
also allows for time-varying treatments that can occur multiple times 
over the observed window.

We used a range of variables describing the counties, including 
demographic, political and mobility variables. Our mobility data 
tracked daily visits to points of interest at individual locations across 
the USA in census block groups, typically covering between 600 and 
3,000 individuals, aggregated to our 3,108 counties (see Methods). 
Mobility data have previously been linked to the spread of COVID-1939–41. 
Many existing studies use general movement patterns30,42,43, such as 
overall time spent away from home, which does not necessarily indicate 
whether individuals engaged in the sort of close interpersonal contact 
that is heavily responsible for the spread of COVID-1940. However, more 
recent studies have used finer-grained mobility metrics28,40,41,44 in line 
with our approach. We tracked movement specifically at full-service 
restaurants, grocers, and fitness and recreation facilities, some of 
which are known to be high-risk locations28,41, and directly included 
these measures in the matching procedure.

In our analysis, a unit is the entire time series of a US county, Xi.  
A unit is treated on a specific day, Xi,t, if it holds an event (mass gather-
ing) of interest (for example, an election, rally or protest) on that day. 
For such a given treated observation, we matched on that county’s 
characteristics for 30 d up to 1 d before treatment. Our primary out-
come of interest is the county-level death rate (measured in deaths per 
10,000 people, per million people; or in absolute counts of deaths). We 
contrasted the treated and matched unit’s outcome for each day in an 
outcome window defined as 10–40 d after an event, which is the epide-
miologically informed period in which we would expect an effect on the 
mortality rate from an event where contagion with SARS-CoV-2 might 
occur45,46. This window captures the first wave of deaths that would 
be expected to occur from infection on the day of a mass gathering.

For consistency, we also used the same time window for the pri-
mary analyses of the other outcomes (see Methods), that is, we used the 
same window for cases. While the incubation period is shorter than 10 d, 
we believe that this window effectively accounts for reporting delays in 
testing, and the period from 10 to 40 d can capture subsequent waves 
of infections that could be traced to infections on the day of an event.

For each day that we estimated in the outcome window, we defined 
the ‘crossover window’ as the period in which we examined the treat-
ment history of potential matched control counties. A control county 
may not be treated during the post-treatment portion of the crossover 
window, defined as 30 d before the given day in the outcome window 
(a day F between 10 and 40) up to the day before treatment. Eligible 
control units must have treatment histories that are similar to the 
treated unit in the pre-treatment crossover window. Thus, we handled 
the treatment histories in a nuanced manner, separately from the 
fixed covariate matching window (Fig. 1). In addition, for each of the 
main analyses presented, we also calculated the ATTs in the crossover 
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window and up to the start of the outcome window (in these cases, we 
observed results that are consistent with those in the outcome window 
itself; see Extended Data Fig. 1).

Valid estimation in this context requires that there is sufficient 
variation of the treatment onsets to find a suitable set of matches for 
each treated unit. For example, starting with an analysis of the prima-
ries, the rolling schedule of these primaries in the USA from February 
to August 2020 helps to satisfy this condition. Furthermore, while 
states are not randomly assigned to primary election days and states 
with later elections may differ in their characteristics from those with 
earlier elections, we observed sufficient county-level variation in the 
features of interest to obtain acceptable matching to the treated units 
(see Methods and Supplementary Information Section 2). While several 
states had primaries that were either cancelled or rescheduled due 
to COVID-19, it seems justified to treat cancelled primaries as control 
units over those dates. Furthermore, for those primaries that were 
rescheduled, the overall difference in the case and death rates between 
the original and rescheduled dates is close to zero (Supplementary  
Fig. 3). The rescheduled primaries were moved to periods in which com-
munity spread still occurred, allowing us to use the counties therein 
as valid treated units.

Overall assessment of local mortality and cases
We first report a summary analysis that examined the overall effect 
for ‘all’ event types and time periods combined, using county-level 

death rates and case rates (Fig. 2a), which correspond to an average 
ATT of −0.257 (95% confidence interval (CI) = −3.482–2.777, P value 
(P) = 0.853, Bayes factor (BF) = 0.030) deaths per million persons for the 
death rates, and an average ATT of −20.949 (95% CI = −80.987–27.604, 
P = 0.414, BF = 0.038) cases per million persons. The point estimates 
on these effects are, in fact, negative. The high quality of the covari-
ate balance between cases and controls for this omnibus analysis is 
shown in Fig. 2b,c.

We emphasize that in most cases, the changes in the wake of the 
events are small in magnitude in absolute terms as well. In the context 
of the death counts, the foregoing rate translates to an ATT for the 
death ‘count’ of −0.0567 (95% CI = −0.319–0.162), such that 0.0567 more 
deaths would have occurred on average for each day over the outcome 
window in the counties that held events, compared with a situation in 
which the political events had not been held.

We also stress that mortality is the more reliable and less biased 
metric (since people might be motivated to modify their testing behav-
iour before or after events), as we found a meaningful increase in the 
total number of tests performed over each day of the outcome window 
and many of the earlier events occurred during a rapid ramp-up in test-
ing at the national level.

Specific types of event and local mortality and cases
We first analysed the primary elections of the spring and summer of 
2020. Our estimates for the effect of the primary elections for each day 

Control county

Treated county

County-level matching covariates

Covariate matching window

–30 0Treatment on day 10 40F

Crossover window (F = 10)

Crossover window (F = F)

Crossover window (F = 40)

Time-varying Time-invariant

Fig. 1 | Overview of matching and estimation. We estimated the ATT for 
each day in the outcome window, from 10 to 40 d after a treatment event (an 
election, rally or protest), which corresponds to the 5th and 95th percentiles 
of the empirically observed distribution of times from infection to death from 
SARS-CoV-2 (vertical blue lines). Given this, we used the same time window for 
the primary analyses of the other outcomes. Treated counties were matched to, 
at most, the five best control counties on the basis of similarity of their covariate 
values from 30 d to 1 d before a treatment event, that is, the ‘covariate matching 
window’ (red solid line arrow), although here we show only one matched county 
for illustration (respectively, represented as yellow and green lines). Treated 
counties may have between one and five matches, contingent on the quality 
of available matches. Covariates are either time-varying (represented as solid 
yellow and green lines; for example, the cumulative death rate, mobility based 
on phone data) or static (represented as dashed yellow and green lines; for 

example, population density) over our study horizon. The ‘crossover window’ 
is the period in which we examined the treatment history of potential matched 
control counties. A control county may not be treated during the post-treatment 
portion of the crossover window (solid black arrows), defined as 30 d before 
F, up to the day before treatment. Eligible control units must have treatment 
histories that are similar to the treated unit in the pre-treatment crossover 
window, 30 d before F to 10 d before F (when defined for the post-treatment 
period, shown by the dashed black arrows). That is, we did not only match on 
a fixed period 30 d before treatment (which is what we did for the matching 
covariates), but also dealt with the treatment histories in a nuanced manner. 
Finally, calipers were applied individually to specific matching covariates as 
needed to ensure that covariate (im)balance remains below 0.1 on average over 
the matching period. Treated observations were dropped from the analysis if 
they had no good-quality matches.
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in the outcome window throughout the USA are generally not signifi-
cant at the 5% level (Fig. 3a). Furthermore, the averages across the entire 
outcome window for the difference in the change in deaths per mil-
lion persons (ATT = 0.180; 95% CI = −1.256–1.927, P = 0.827, BF = 0.037) 
and cases per million persons (ATT = −8.221, 95% CI = −47.524–32.47, 
P = 0.667, BF = 0.038) were not significant (Supplementary Table 2), 
in keeping with the day-by-day results.

Because the number of voters present at the polls (and, in par-
ticular, the number of voters in a tightly congested area) might affect 
the risk of transmission, we did additional analyses stratified on the 
turnout rate. We observed that no level of turnout yielded a positive 
and significant increase for either outcome compared with the matched 
control units (Fig. 3b). Separately, we conducted additional analyses 
that stratified on the population density, primary date, census region, 
2016 Trump vote share, the number of days between the first reported 
case and the primary date, the cumulative case rate on the primary 
day and the cumulative death rate on the primary day for the treated 
counties (Supplementary Figs. 4–17), and consistently found no clear 
evidence for an effect of the primary elections on COVID-19 in the 
subsequent period.

Second, we estimated the effect of the 5 January 2021 US Senate 
run-off elections in Georgia. This election is notable both because 
it (1) occurred during the third peak of COVID-19 in the USA, when 

the rate of new cases was at the highest point during the pandemic; 
and (2) was extremely competitive and high-profile, attracting atten-
tion at the national level47. The latter meant that this primary elec-
tion set a record for voter turnout48 and the mean in-person turnout 
rate was higher than that of the primary elections (Supplementary  
Fig. 18a,b). Yet, despite these differences and consistent with the pri-
mary election results, we observed a mixture of non-significant and 
positive significant effects on a day-by-day basis (Fig. 4a). However, the 
outcome-window-wide average for the death rate represents an average 
growth in the death rate on the order of 10 deaths per million persons 
and is not significant at the 5% level (ATT = 9.197, 95% CI = −8.972–29.541, 
P = 0.385, BF = 0.141). The case rate outcome average was also not sig-
nificant (ATT = −69.949 per million persons; 95% CI = −325.136–175.960, 
P = 0.552, BF = 0.105) (Supplementary Table 2).

Furthermore, models that stratified by in-person voter turnout 
did not reveal significant differences in the ATTs as the turnout rate 
increased (Supplementary Figs. 19 and 20). Moreover, we conducted 
an additional analysis that stratified by the county-level propensity to 
wear masks; this analysis did not yield significant effects on average 
across the outcome window, although the effect size diminished by 
half in counties that had a tendency to report mask-wearing above 
the median for counties in Georgia (Supplementary Figs. 21 and 22, 
and Supplementary Table 2). Finally, a similar effect was observed in 
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Fig. 2 | Impact of all mass gatherings for political expression on COVID-19 
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1,638, 1,637, 1,636, 1,636, 1,634, 1,633, 1,632, 1,631, 1,631, 1,621, 1,621, 1,620, 1,620, 
1,619, 1,619, 1,619, 1,618, 1,618 and 1,618. N is the number of treated counties on a 
day in the outcome window. There are, on average, 7,277 matched units across 
the period. b, Covariate balance for the death rate model. The balance scores 
reflect the similarity between the treated units and their matched counties for 
30 d before, up to 1 d before a political event. They reflect the covariate balance 
after matching refinement and the application of a caliper to ensure match 
quality. The balance scores are, on average over the matching window, within the 
threshold of 0.1, indicating sufficient similarity between the treated and matched 
counties for the estimated ATTs. c, Covariate balance for the case rate model. 
The balance scores are, on average over the matching window, again within the 
threshold of 0.1. See Extended Data Figs. 2 and 3 and Methods for more details.
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an analysis that stratified by above or below 50% vote share for Donald 
Trump in the 2016 election (Supplementary Figs. 23 and 24).

Third, we assessed the effect of the 2 November 2021 gubernatorial 
elections in New Jersey and Virginia. These elections had in-person turn-
out rates that were over twice that of the primary elections (Supplemen-
tary Fig. 18c,d), and similar to the election in Georgia, were prominent 
on the national political stage and set records for levels of turnout49,50. In 
addition, these elections were held during the surge of the Delta variant 
in the USA and occurred one month before a new set of policy responses 
to mitigate the spread of the Omicron variant. The elections were also 
held during a period of concern about ‘pandemic fatigue’ (drops in 
adherence to social distancing and masking protocols as frustration 
with pandemic restrictions in the public was rising)51–53. While we could 
not directly match on the county-level vaccination status in these late 
elections, our included demographic characteristics are strongly 
associated with the vaccination levels in the USA54,55. Here again, we 
observed no significant evidence for an effect of the elections on the 
mortality rate or case rate after the elections in both states combined, 
with an outcome-window-wide average ATT for the death rate of −15.927 
per million persons (95% CI = −29.19–4.298, P = 0.013, BF = 2.472) and 
non-significant average for the case rate (ATT = −220.749 per million 

persons, 95% CI = −482.639–135.296, P = 0.139, BF = 0.296) (Fig. 4b and 
Supplementary Table 2).

Fourth, we estimated the effect of Donald Trump’s political rallies 
held over the course of 2020. These rallies varied in attendance and 
were held outdoors in all but three cases (Tulsa, 20 June; Phoenix, 23 
June; Henderson, 13 September). The rallies themselves were most 
commonly held at airports. Estimates for the rally sizes range from hun-
dreds to thousands7, although no precise or consistent data are avail-
able. We assumed that individuals were willing to attend a rally from 
up to three counties away from the rally location and consequently 
applied a model that accounts for spillover effects onto neighbouring 
counties. Specifically, we defined four levels of exposure to the treat-
ment: (1) direct treatment, where a county holds a rally, (2) first degree 
exposure, where a county borders one that holds a rally, (3) second 
degree, where a county is one county away from one that holds a rally 
and (4) third degree, where a county is two counties away from one that 
holds a rally. In each case, we found no positive and significant set of 
estimates over the outcome window 10–40 d after a rally for each level 
of exposure to a rally, with non-significant outcome-window-wide 
averages for the death rate (ATT = –0.333 per million persons, 95% 
CI = −6.157–5.07, P = 0.983, BF = 0.144) and case rate (ATT = 10.636 per 
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Fig. 3 | Impact of the primary elections on COVID-19 mortality and case 
rates. Generally, we observed no statistically significant increase on average 
for treated counties from a period of 10–40 d after a primary election was held. 
Error bars indicate 95% CIs. a, Overall ATT estimates for the primary elections, 
representing the average difference in the change in death (blue) and case 
(orange) rates from the day before treatment to 10–40 d after an election. For the 
death rate outcome, N = 965 for days 10–23, 961 for days 24–30 and 956 for days 
31–40. For the case rate outcome, N = 1,057, 1,056 and 1,051 for the same ranges 
in the outcome window. N represents the number of treated units. The average 
numbers of matched units are 4,284 and 4,878 for the death and case rates, 
respectively, over the whole period. b, ATT estimates stratified by the in-person 
voter turnout rate (defined as the number of in-person voters out of the total 
county population). The strata represent quantiles of the distribution of turnout 

rates over the counties with elections. Since turnout data were not available for 
CO, IA, KY, MA, MI, MN, MS, MO, MT, NV, NY, OK, PA, RI, SD, UT and WV, these 
states were estimated as a separate category (see Methods). For the death rate, 
for each turnout bin, N = 132, 141, 121 and 88 on days 10–23; 131, 141, 121 and 88 on 
days 24–30; and 130, 140, 121 and 88 on days 31–40. N represents the number of 
treated counties on a day. For the case rate, N = 567, 664, 646 and 426 for days  
10–16; 566, 664, 646 and 426 for days 17–23; 566, 662, 646 and 426 for days 24–30; 
and 557, 656, 640 and 424 for days 31–40. The average numbers of matched units 
over the period are 470, 563, 548 and 416 for the death rate and 154, 156, 142 and 
90 for the case rate in respective strata. Covariate balance scores for the results 
in a and b are, on average over the matching window, within the threshold of 0.1, 
indicating sufficient similarity between the treated and matched counties for the 
estimated ATTs (see Extended Data Fig. 4 and Supplementary Figs. 38–42).
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million persons, 95% CI = −169.233–213.967, P = 0.984, BF = 0.137) for 
direct treatment (Fig. 5a and Supplementary Table 2). We also examined 
indirect exposures in neighbouring counties and found no evidence of 
an association for death and case rates (Fig. 5b). In addition, we strati-
fied by Trump’s share of the vote; we supposed that counties that had a 
majority vote for Trump would be more likely to contain rally attendees 
and possess a greater likelihood of rally-induced transmission. In each 
stratum, we found no positive and significant pattern over the outcome 
window (see Supplementary Figs. 25–28). We note that it is plausible 
that individuals were infected but did not seek testing after attending 
Trump rallies, which further underscores death rate as a more reliable 
metric of interest in this context.

Fifth, we estimated the effect of the BLM protests and found 
no evidence for an effect of the protests on the mortality rate, with 
non-significant outcome-window-wise averages for death rate 
(ATT = −0.442 per million persons, 95% CI = −2.833–1.836, P = 0.688, 
BF = 0.058) and case rate (ATT = 31.380 per million persons, 95% 
CI = −12.475–85.095, P = 0.116, BF = 0.018) (Fig. 6a and Supplementary 
Table 2). In addition, we stratified by the total crowd size estimate for all 
protests on a given day in a county, and found no evidence for an effect 
of the protests across the strata, even for the largest protests (ranging 
from ~3,000 to 30,000 persons) (Fig. 6b). We also found no clear and 
significant effects in a model that stratified treated observations on the 

basis of the number of recent protests (totalling above 800 persons) 
that occurred within the 3 weeks before the focal protest (see Supple-
mentary Figs. 29 and 30). See Supplementary Information Sections 
1 and 2 for more details and for further robustness checks. Extended 
Data Figs. 2–9 present the estimates before refinement, and with and 
without calipers for the death rate models.

Political gatherings and local COVID-19 Rt

In addition to analysing the effect of these five event types on the case 
and mortality rates as discussed above, we also applied our approach 
to estimates from an independently developed epidemiological model 
of the transmissibility of SARS-CoV-2, which reconstructed the course 
of the virus from the observed deaths and cases, and from epidemio-
logically informed assumptions about the dynamics of the virus (see 
Methods for further details)31. We examined the impact of each of the 
five event types on the county-level estimated effective reproduction 
number (Rt). In each situation, we observed no statistically significant 
impact of large-scale political events on the difference in the change 
in Rt from the day before an event to between 0 and 20 d afterwards 
between treated and matched counties (Fig. 7). Note especially the lack 
of estimated impact on the day of an event, or in the immediate period 
within 10 d of the event. Furthermore, the effects are close to zero in 
magnitude in the initial few days, with small confidence intervals, which 
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Fig. 4 | Impact of the GA special election and the NJ and VA gubernatorial 
elections combined on COVID-19 mortality and case rates. a, Overall ATT 
estimates for the GA election, representing the average difference in the change 
in death (blue) and case (orange) rates from the day before treatment to 10–40 d 
after the election. While there is some evidence for a very modest increase in risk 
of local mortality in the follow-up window, we did not find a statistically significant 
average effect over this period (Supplementary Table 2); furthermore, we found 
no evidence for a similar general increase in the case rates. For the death rate, 
N = 137 for each day in the outcome window, where N represents the number of 
treated counties on a day in the outcome window. For the case rate, N = 152. There 
are 566 and 701 matched counties for the death and case rates, respectively.  
b, Overall ATT estimates for the NJ and VA gubernatorial elections, representing 

the average difference in the change in death rates from the day before treatment 
to 10–40 d after the election. There is some evidence for a very modest decline 
in risk of local mortality and in the case rates and case prevalence on most days in 
the follow-up window, but we did not find a statistically significant overall average 
effect over this whole period (Supplementary Table 2). For the death rate, N = 125 
for each day in the outcome window, where N represents the number of treated 
counties on a day in the outcome window. For the case rate, N = 141. There are 528 
and 649 matched counties for the death and case rates, respectively. Covariate 
balance scores for the results in a and b are, on average over the matching window, 
within the threshold of 0.1, indicating sufficient similarity between the treated 
and matched counties for the estimated ATTs (see Extended Data Fig. 6 and 
Supplementary Figs. 43–46). Error bars indicate 95% CIs.
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further increases our confidence in the absence of an effect of the politi-
cal events we have studied on the transmissibility of SARS-CoV-2.

Political gatherings and local mobility
Finally, we applied our method to examine the impact of the political 
gatherings on our three mobility metrics (at fitness and recreation 
centres, full-service restaurants and grocers) known to be associated 
with the spread of SARS-CoV-228,41. In each case, we found no significant 
impact of these political events on visits to these location types over an 
outcome window of 0–20 d after an event. That is, there were neither 
statistically significant changes in overall visits to these location types 
on the day of the events themselves nor a discernible impact on mobility 
patterns subsequent to the events (Fig. 8).

Discussion
Across a broad array of mass gatherings, including elections, rallies 
and protests that took place throughout 2020 and 2021, we find no 
substantial evidence for a material deflection of the local course of 

the pandemic for a period ranging from 10 to 40 d afterwards. Our 
analysis here is ‘ecological’56 in the sense that we examine whether 
political activities affected the course of the pandemic in a county, not 
whether, at the ‘individual’ level, going to the polls or participating in a 
rally or protest affects an individual’s risk of contracting the infection.

There is no fixed intrinsic connection between mass gatherings 
of a specifically political nature and the spread of SARS-CoV-2 per se. 
Our focus on political gatherings was driven partly by their particular 
importance and partly by the fact that it was possible to systemati-
cally assemble a comprehensive database of all such gatherings, with 
precise timings (in a way that would not have been as feasible had we 
focused on other sorts of gatherings, such as sporting events, musical 
concerts and so on).

Furthermore, the impact of the gatherings on the epidemic, espe-
cially in the case of elections, hangs on the particular policies and 
behaviours found at individual voting sites, for instance, whether 
masks were used by poll workers and voters, whether most of the time 
was spent outside and whether individuals were physically distanced 
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Fig. 5 | Impact of Donald Trump’s rallies on COVID-19 mortality and case 
rates. Generally, we observed no statistically significant increase on average for 
treated counties from a period of 10–40 d after a political rally was held. Error bars 
indicate 95% CIs. a, Overall ATT estimates for Donald Trump’s rallies, representing 
the average difference in the change in death (blue) and case (orange) rates from 
the day before treatment to 10–40 d after a rally. For the death rate, N = 60 for 
day 10, 59 for days 11–13 and 58 for days 14–40. For the case rate, N = 64 over the 
whole period. Here, N is the number of treated counties. The average numbers of 
matched units are 252 and 303 for the death and case rates, respectively. b, ATT 
estimates for counties stratified by indirect exposure to the treatment. Degree 
1 represents counties adjacent to a county that held a rally, degree 2 represents 
a county one county away from one that held a rally, and degree 3 represents a 
county two counties away from one that held a rally. For the death rate for degrees 
1, 2 and 3, N = 366, 720 and 1,069 for day 10; 365, 719 and 1,064 for days 11–14; 364, 
718 and 1,060 for day 15; 363, 718 and 1,058 for day 16; 363, 718 and 1,056 for day 
17; 363, 715 and 1,056 for days 18–19; 363, 715 and 1,054 for day 20; 363, 714 and 

1,053 for days 21–22; 363, 713 and 1,053 for days 23–25; 363, 711 and 1,053 for days 
26–30; 363, 710 and 1,052 for days 31–38; 363, 709 and 1,049 for day 39; and 363, 
708 and 1,047 for day 40. N represents the number of treated counties. Over the 
whole period, the average numbers of matched counties are 1,679, 3,291 and 4,820 
for degrees 1 to 3, respectively. For the case rates for degrees 1, 2 and 3, N = 384, 
760 and 1,110 for day 10; 383, 760 and 1,105 for days 11–12; 383, 759 and 1,104 for 
day 13; 382, 759 and 1,104 for day 14; 382, 758 and 1,104 for days 15–16; 381, 758 and 
1,102 for days 17–18; 381, 757 and 1,102 for days 19–20; 381, 757 and 1,101 for days 
21–22; 380, 757 and 1,101 for days 23–29; 380, 756 and 1,101 for day 30; 380, 755 and 
1,101 for days 31–35; 380, 753 and 1,101 for days 36–38; 380, 751 and 1,100 for day 
39; and 380, 750 and 1,098 for day 40. Over the whole period, the average numbers 
of matched counties are 1,840, 3,634 and 5,262 for degrees 1 to 3, respectively. 
Covariate balance scores for the results in a and b are, on average over the 
matching window, within the threshold of 0.1, indicating sufficient similarity 
between the treated and matched counties for the estimated ATTs (see Extended 
Data Figs. 7 and 8, and Supplementary Figs. 47 and 48).
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or quiet while waiting in line. Voting is indeed not ordinarily an inti-
mate activity, and the prevalence of the virus in a given time and place 
also likely plays a role. Super-spreader events do happen, especially 
with interpersonal contact57. For instance, a single wedding in Maine 
in August 2020 was linked to 270 cases and eight deaths58, enough to 
fundamentally alter the trajectory of COVID-19 in a state that previ-
ously had relatively few deaths and cases. However, many of these 
super-spreading events during the COVID-19 pandemic have been in 
familial settings associated with close contact and a lack of precau-
tions, or have involved sustained indoor exposure57,59. Hence, vot-
ing or other political activities may present a level of risk similar to 
shopping at a grocery store or waiting in line outside a restaurant for 
a take-out order. In fact, on many days during the outcome window 
for the NJ and VA gubernatorial elections, we even observed signifi-
cant and ‘negative’ estimates, which may reflect the fact that voting 
could actually be a safer alternative to usual activity patterns then 
prevalent (which might have been more likely to involve direct, close 
interpersonal contact).

While we observed a lack of consistent evidence for a spike in mor-
tality associated with the primaries, the GA special election, or the NJ 
and VA gubernatorial elections, it is important to note several caveats 
with respect to the safety of voting in general. Most of the primary elec-
tions were held under fair-weather conditions, enabling individuals to 
wait in long lines outside, at lower risk of transmission; however, this 
was less true for the GA special election (which took place in January) 
or the NJ and VA elections (in November). It remains possible that the 
effect could be moderated by the tendency to wear masks or socially 
distance at the polls. We expect that mass gatherings in close conditions 
without social distancing, mask use or vaccination with boosters may 
pose a more serious risk of transmission, especially in cases of high 
turnout where voting takes place in crammed and enclosed spaces.

Troublingly, while policy arguments about mass gatherings have 
been politicized during the COVID-19 pandemic, the discussion has 
largely taken place in the absence of a comprehensive assessment of 
the public health risks of collective political activities. With respect to 
the US elections, three studies have been conducted on the Wisconsin 
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Fig. 6 | Impact of the BLM protests on COVID-19 mortality. Generally, we 
observed no statistically significant increase for treated counties from a period 
of 10–40 d after a protest was held. Error bars indicate 95% CIs. a, Overall ATT 
estimates for the protests, representing the average difference in the change in 
death (blue) and case (orange) rates from the day before treatment to 10–40 d 
after a protest. For the death rate, N = 402, 385, 377, 369, 361, 357, 354, 352 and 350 
for days 10–18, 349 for days 19–24, 348 for day 25, 347 for days 26–29, 346 for day 
30, 345 for day 31, 344 for days 32–34, 343 for days 35–37 and 342 for days 38–40. 
N represents the number of treated counties. The average number of matched 
counties over the period is 1,346. For the case rate, N = 448, 441, 437, 432, 430, 
424, 422 and 420 for days 10–17, 419 for days 18–21, 418 for days 22–24, 417 for 
days 25–37 and 416 for days 38–40. The average number of matched counties is 
1,764. b, ATT estimates stratified by protest size (defined as the total crowd size 
estimate within the treated county on that day). The strata represent quantiles of 
the distribution of estimated crowd sizes. For the death rate for each protest size 
bin, N = 150, 181 and 48 for day 10; 145, 172 and 44 for day 11; 142, 168 and 43 for 

day 12; 139, 167 and 41 for day 13; 137, 164 and 39 for day 14; 134, 161 and 39 for day 
15; 132, 160 and 39 for day 16; 132, 159 and 38 for day 17; 132, 157 and 38 for day 18; 
132, 156 and 38 for days 19–23; 131, 156 and 38 for day 24; 131, 156 and 37 for day 25; 
131, 155 and 37 for days 26–29; 131, 154 and 37 for day 30; 130, 154 and 37 for days 
31–32; 129, 154 and 37 for days 33–34; 128, 154 and 37 for days 35–37; and 128, 153 
and 37 for days 38–40. N represents the number of treated counties. The average 
numbers of matched counties are 533, 545 and 130 for the 3 strata, respectively. 
For the case rate, N = 170, 210 and 66 for day 10; 170, 204 and 64 for day 11; 170, 201 
and 62 for day 12; 168, 199 and 61 for day 13; 168, 198 and 60 for day 14; 165, 196 and 
60 for day 15; 165, 195 and 60 for day 16; 164, 194 and 60 for day 17; 164, 194 and 59 
for days 18–21; 164, 194 and 58 for days 22–24; 164, 194 and 57 for days 25–37; and 
164, 193 and 57 for days 38–40. The average numbers of matched counties are 
699, 778 and 220 for the 3 strata, respectively. Covariate balance scores for the 
results in a and b are, on average over the matching window, within the threshold 
of 0.1, indicating sufficient similarity between the treated and matched counties 
for the estimated ATTs (see Extended Data Fig. 9 and Supplementary Figs. 49–53).
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primary election, and these reached conflicting conclusions regard-
ing the impact of in-person voting on the subsequent course of the 
COVID-19 epidemic, although two found no subsequent increase60–62. 
Separately, two studies have been conducted on the effect of the BLM 
protests, each finding no clear effect30,63. Our comprehensive study of 
the whole USA covering a 2year period thus sheds light on this topic.

Smaller-scale studies in foreign countries also paint a mixed pic-
ture, although most agree with our findings. Examining the first and 
second rounds of the 2020 French municipal elections, one study 
found a sizeable subsequent increase in hospitalization rates after the 
first-round election (in March) but did not find any increase associated 
with the second-round elections (in June) when masks became obliga-
tory64. Two further studies65,66 respectively using a Bayesian mixture 
model and a sigmoidal mixed effects model found no effect of the 
same French elections for either round. A study of the October 2020 
elections in the Czech Republic found a subsequent increase in cases67. 
Yet another study, of elections in Italy in September 2020, found that 
a subsequent increase in the spread of COVID-19 was driven mainly by 
campaign activities leading up to the elections, which allowed indoor 
events at public and private places with no limit on the size of the event 
(in contrast to size restrictions imposed on other event types in Italy 
at that time), rather than by infections at the polls themselves68. In still 
another context, researchers found no effect of voting on the spread 
of COVID-19 in the 2020 Brazilian municipal elections, which occurred 
in the context of a broad public health campaign and restrictions, 

including a mandate that voters wear masks at the polls69. Finally, an 
additional study found no increased mortality among 163,000 candi-
dates in the 2020 French town hall elections70.

Generally, the studies that have found significant effects of politi-
cal events are those that either do not account for the nonlinear conta-
gion process61,71, or do so only indirectly64,67. By contrast, studies that 
directly account for the contagion process, such as the present one, 
have found no significant effects60,65,66. Our study thus adds to the 
literature by directly accounting for the nonlinear contagion process 
in a generalized difference-in-differences framework, and avoiding 
some key difficulties associated with some epidemiological models72 
and many existing causal inference methods34.

In contrast to voting, the Trump rallies and BLM protests were 
almost entirely held outdoors in the open air, despite large crowd 
sizes. Outdoor transmission of COVID-19 is very rare73. The Sturgis 
Motorcycle Rally is often cited as an example of outdoor transmission74; 
however, it was marked by indoor events in addition to the outdoor 
gathering, with cases stemming from the rally linked to restaurants 
and workplaces75. Consistent with this finding, we found no evidence 
of an uptick in visits to restaurants or other locations known to yield 
a high risk of transmission associated with the protests or rallies we 
studied (Fig. 8 and Supplementary Figs. 31 and 32). Furthermore, it 
is also possible that the average age of people attending rallies and 
protests is younger and their underlying health better than the elec-
torate as a whole.
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Fig. 7 | Impact of large-scale political events on COVID-19 Rt. The results 
represent the average difference in the change in the transmissibility of the virus 
from the day before treatment to the day of a protest, up to 20 d after the protest. 
We found no evidence of a significant increase in transmissibility stemming from 
these events, starting on the day of the event (day 0) to within 20 d of the event. 
Error bars indicate 95% CIs. a, Overall ATT estimates for the primary, GA special, 
and NJ and VA gubernatorial elections. b, Overall ATT estimates for the BLM 
protests and Donald Trump’s political rallies. For the primaries, N = 971 for days 
0–13 and 969 for days 14–20. N represents the number of treated counties. The 
numbers of matched counties are 4,473 and 4,466 for the same periods; for the 

GA special, N = 87, with 211 matched counties. For the gubernatorial elections, 
N = 83, with 230 matched counties. For the Trump rallies, N = 65, with an average 
of 308 matched counties. For the BLM protests, N = 466 for day 0, 460 for day 1, 
458 for day 2, 456 for day 3, 543 for day 4, 452 for days 5–6, 451 for day 7, 449 for 
days 8–10, 448 for day 11, 447 for days 12–14 and 446 for days 15–20. The average 
number of matched units is 1,902. Covariate balance scores for the results in 
a and b are, on average over the matching window, within the threshold of 0.1, 
indicating sufficient similarity between the treated and matched counties for the 
estimated ATTs (see Supplementary Figs. 54–59).
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Another possible explanation of the observed results with respect 
to the mass gatherings we have studied is that people in an area with 
recent political activity, or the individuals participating in such activ-
ity themselves, may make compensatory adjustments to lower their 
‘other’ risks of contracting the virus. For instance, elderly people in an 
area of a rally or protest may decide to stay inside and avoid contact 
with others for a few weeks after the rally (even if they themselves did 
not participate)76. On this account, the fact that the mass gatherings 
studied here did not seem to deflect the overall COVID-19 mortality 
curves in the short run could be driven by compensation for the risks 
of the events themselves. However, we found no evidence for mobility 
decreases following the large-scale political activities (at locations 
known to be at high risk for transmission) that would support such an 
account (Fig. 8 and Supplementary Figs. 33 and 34).

Our study is potentially limited by unobserved factors, as with 
any statistical approach to observational data, including previous 
analyses of COVID-19 risks and responses28,30,38,41,46,60,61,72,74. Such infer-
ential problems may indeed be worse for a process that is intrinsically 
contagious, which is one of the reasons we also sought to match index 
counties with multiple control counties that had similar previous 
epidemic trajectories. Furthermore, while the results are consistent 
across time and event types, the confidence intervals encompass a 
range of possibilities. Finally, these results, focused on a particular 
class of mass gatherings, are at odds with some epidemiological stud-
ies of NPIs (which have included mass gathering bans as a possible 
stratagem)46,77–79. On the other hand, our results agree with two previ-
ous studies of some of the BLM protests63, and two previous studies 
of the Wisconsin primary (that is, a single state), as noted earlier60,62. 
Furthermore, they are in line with a more complex picture that is being 
established as researchers grapple with the set of existing conclusions 
drawn from traditional statistical methods34.

We urge careful interpretation of these results, which may be 
specific to these events in the US context. The full range of potentially 
confounding factors should be considered in the context of mass politi-
cal gatherings across the globe, where leaders are deciding whether to 
hold in-person elections or restrict the right to protest, especially in 
places characterized by a scarcity of vaccines.

Furthermore, we emphasize the heterogeneous nature of these 
events themselves, which are associated with differential risk expo-
sure for different groups; for instance, older voters who are at high 
risk for COVID-19 tended to vote at the highest rates80, while younger 
individuals were more likely to attend BLM protests. Such effects may 

also potentially bias some of our outcome metrics; for instance, those 
who attend Trump rallies may be less likely to seek testing, and younger 
people who attend BLM protests may be less likely to die from contract-
ing COVID-19. Hence, while the mortality data are generally taken to be 
a better reflection of the underlying state of the COVID-19 epidemic81, 
we performed a comprehensive analysis that considered case rates 
and transmissibility as supplements to mortality rate, and observed 
no evidence for an effect on any of the outcomes.

Another limitation pertains to the potential relationship between 
the epidemic and turnout at several of the events we studied; it is pos-
sible that individuals decided not to turn out to these events for fear of 
exposure. Our approach helps avoid potential bias due to this potential 
relationship by matching counties on the basis of characteristics of 
the epidemic (the death or case rate or transmissibility in the period 
leading up to the event, along with the date of the first reported case). 
Nonetheless, because we did not have access to comprehensive data 
on the list of attendees for all events and were not able to adjust the 
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Fig. 8 | Impact of large-scale political events on COVID-19 mobility. The results 
represent the average difference in the change in the number of adjusted visits 
to a given location type from the day before treatment to the day of an event, 
up to 20 d after the event. For each event, we examined visits to full-service 
restaurants, grocers, and fitness and recreation centres. We found no evidence 
for a significant change in mobility stemming from these events within 20 d of an 
event. Error bars indicate 95% CIs. a–e, Overall ATT estimates for the primaries 
(a), GA special election (b), NJ and VA gubernatorial elections (c), Donald Trump’s 
political rallies (d) and the BLM protests (e). For the primaries, the number of 
treated units was N = 971 for days 0–13, 967 for days 14–20, 960 for days 21–31, 957 
for days 32–34, 953 for days 35–38 and 952 for days 39–40. There is an average of 
4,271 matched units over the whole period. For the GA special, N = 83 for each day, 
with 252 matched units. For the gubernatorial elections, N = 83, with 284 matched 
counties. For the Trump rallies, N = 32 for days 0–4, 31 for days 5–16, 30 for days 
17–31 and 29 for days 32–40. Over the whole period, there is an average of 284 
matched units. For the BLM protests, N = 188, 181, 177, 176, 173, 171, 167 and 164 for 
days 0–7, 163 for days 8–10, 162 for days 11–26, 161 for day 27, 160 for day 28, 159 
for days 29–34, 157 for days 35–36 and 156 for days 37–40. The average number 
of matched counties is 519 over the whole period. Covariate balance scores for 
the results in a–e are within the threshold of 0.1, on average over the matching 
window, indicating sufficient similarity between the treated and matched 
counties for the estimated ATTs. The balance scores are identical to those for the 
corresponding models for the death rates.
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death counts on the basis of exact attendance, we instead adjusted 
death counts on the basis of the county population. In addition, we did 
not include extensive data on health system capacities and constraints. 
However, given the structural inequities in our society, these are likely 
to be strongly correlated with the extensive set of matching covariates 
we did include82,83, and hence are likely similar between our treated 
counties and their matched controls. Thus, while this exclusion of 
data on health system capacities and constraints represents another 
limitation of our study, it would seem less likely to bias our results. 
While low attendance in counties with higher rates of COVID-19 might 
have reduced transmission, we see this as a possible effect modifier, 
which does not bias the results. Furthermore, we note that these events 
were large in scale (Extended Data Fig. 10), often involving thousands 
of individuals at key phases of the pandemic; our analyses that look 
directly at variation in election turnout and protest size did not yield 
significant effects.

Policy responses to voting and political expression should be 
mindful of their potentially disparate impact on otherwise already 
disenfranchised groups if policymakers make a potentially spurious 
effort to reduce risks of COVID-1984–87. We also note that the decisions 
individuals make and should make for themselves about whether to 
attend a political gathering are distinct from the overall collective 
impact. Still, we consistently find no evidence for a material increase 
in COVID-19 mortality or other epidemic parameters as a result of mass 
gatherings for political expression across a wide range of settings in the 
USA. This lack of evidence stands in contrast to the sizeable effects esti-
mated for some other non-pharmaceutical interventions; as a result, 
our study may help to underscore the importance of a policy focus on 
NPIs with demonstrated effects88. The complex manifestations of this 
protean respiratory pathogen should not be underestimated.

Methods
Data
Johns Hopkins COVID-19 mortality (and case) data. County-level 
COVID-19 deaths were collected from a repository maintained by the 
Johns Hopkins Coronavirus Resource Center (https://coronavirus.jhu. 
edu/)81, compiled from local and state health agencies. This dataset is a 
standard in the literature and is considered the authoritative source of 
COVID-19 mortality and case data89. Our main analyses used the survey 
of COVID-19 death counts, while supplementary analyses employed 
positive test results as an alternative outcome for each estimated 
model. Our main analyses focused on COVID-19 death counts, rather 
than positive test results, as our outcome measure due to: (1) limited 
and changing testing capacity, (2) bias with respect to COVID-19 testing 
implementation and (3) the lack of available test data at the county level 
for many areas of the country. With respect to (2), individuals were only 
likely to be tested if they showed symptoms, or had the means to get 
tested; consequently, the tests cannot be viewed as a representative 
sample of the population.

In our analysis, we assumed that entries before the first reported 
data were zero counts, and we removed observations not attribut-
able to any specific US county. In addition, we retained observations 
where the cumulative death counts declined from one day to the next; 
decreases may occur due to reporting error, such as a correction of an 
overcount. In these cases, we marked the change from one day to the 
next as a zero.

COVID-19 transmissibility estimates. We drew on estimates of the 
effective reproduction number of the virus over time at the county 
level from a COVID-19 epidemiological modelling project. This model 
uses a Bayesian framework that accounts for reporting delays and 
variability in case ascertainment to reconstruct the course of the epi-
demic from observed death and case counts31,32,33. Model estimates are 
freely available online from the project website, or reproducible with 
‘covidestim’, an R package90. We drew the daily county mean estimates 

from the model as an additional outcome to supplement our analyses 
of case and mortality rates.

The model (as implemented in ref. 31) was fitted using the data 
on new cases and deaths to model the unobserved transmission rate, 
from the Johns Hopkins data (described above). The model used four 
compartments: a- or pre-symptomatic; symptomatic and not severe; 
symptomatic and severe; and death. Uninfected individuals become 
asymptomatic and either recover or move to the symptomatic state 
from which they either recover or move to the severe symptomatic 
state. Individuals in the severe state either recover or die. Individuals 
were assumed to be infected only once. The Rt trend was modelled as a 
log transformed cubic b-spline with knots every 10 d, and with penalties 
on the first and second differences on the spline parameters to ensure 
a parsimonious fit. The lags between infection to symptoms, sympto-
matic cases to severe ones and severe infections, and reporting delays 
were taken to be fixed, and according to a Gamma distribution, consist-
ent with the literature46. Model results were found to be robust under a 
range of assumptions31. Case ascertainment varied substantially over 
the course of the epidemic; to account for this, the fraction diagnosed 
in the model was allowed to vary over time. Further details, including 
a full list of model parameters, are available in ref. 31.

SafeGraph. We applied data from SafeGraph, which collects and aggre-
gates data from a range of mobile phone applications to track popula-
tion mobility. SafeGraph data, including point-of-interest location 
data, have been used extensively to study population mobility during 
COVID-1941,91,92 and were found to be demographically representative93. 
We used the Places-Patterns dataset, which tracks hourly visits to a set 
of Core Places, which are points of interest around the USA that contain 
addresses and North American Industry Classification System (NAICS) 
codes. We included three business categories previously found to be 
associated with possible transmission risk: grocers, gyms and fitness 
clubs, and full-service restaurants28,41. We aggregated the place data 
to the daily and county level for each business category. Each mobility 
variable represents the total daily visits to locations, classified into the 
above categories, by users in the SafeGraph database, weighted by the 
ratio of the number of SafeGraph users resident in that county to the 
total county population to adjust for the sample size in each county94. 
In addition, we removed all parent points of interest from the dataset to 
ensure that no location was counted twice in the dataset (for example, 
counting a mall and the stores therein).

BLM protests. The US Crisis Monitor95 is a curated dataset, produced 
in collaboration with the Armed Conflict Location and Event Data 
Project and the Princeton University Bridging Divides Initiative, that 
contains comprehensive data on political protests, violence, demon-
strations and related events in the USA for 2020. We systematically 
considered all protest-related events that occurred in the USA between 
26 May 2020 and 10 October 2020. This period captures the series of 
protests that initially started during the aftermath of the murder of 
George Floyd and extended across the country95. We aggregated the 
individual protest events to the county–day level. Our data included 
all substantial events that occurred in this period, including some pro-
test events not related to BLM. We observed 658 distinct county-level 
events, where 94% were classified as part of the BLM movement, 7% as 
‘Blue Lives Matter’ pro-police, pro-Donald Trump and 3% as including 
direct references to COVID-19. The remaining protests involved various 
other political causes.

The dataset included accounts from newspaper and traditional 
media sources on the location, date and size of protest events. Protest 
crowd size estimates ranged from specific numbers (for example, 
300), numeric ranges (for example, 300–500), to descriptive esti-
mates (for example, hundreds, thousands, ‘almost a dozen’). For 
general range descriptions, we took the geometric mean over the 
possible range of values it could encompass (for example, ‘hundreds’ 
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becomes √100 × 1,000 ). These approximations serve our goal to 
separate protests by orders of magnitude. Nonetheless, crowd size 
estimates from newspaper sources have been found to produce gen-
erally accurate estimates of crowd sizes96. In our data, multiple pro-
tests frequently occurred within a county on a single day; in this case, 
we summed the estimated protest counts over each individual event. 
Rather than directly relying on protest size estimates, our main analy-
sis applied an event-size threshold to define a binary treatment vari-
able. We only considered a county as ‘treated’ on a given day if the 
aggregated protest count was above 800 persons. On the other hand, 
only counties with protests below 400 persons were eligible to be 
matched control units to a treated county. The distribution of protest 
sizes was highly skewed (Supplementary Fig. 35).

US elections. Our elections data consist of the rolling schedule of 
primary dates. During the 2020 primary election cycle, several states 
rescheduled (Supplementary Table 1) or cancelled their in-person pri-
mary elections. Our primary treatment used the rescheduled election 
dates, and only elections that were held in-person were considered as 
treated observations. Counties in which mail-in-only primaries were 
held were eligible to serve as matched control units. We analysed elec-
tions in 1,173 counties drawn from 21 states where applicable elections 
were held across the mainland USA; we drew on the full set of 3,108 
counties in the 48 continental states in mainland USA (including the 
District of Columbia) as our source for match units. The 2020 primary 
election cycle ran from 3 February (Iowa (IA)) to 11 August (Connecticut 
(CT)). In our main analysis, we only considered primaries that occurred 
after 14 March; we believe that any primary election held before 1 
March is not a valid treatment, given the low likelihood of COVID-19 
community spread before March in most locations.

We further estimated a model that stratifies by voter turnout. 
We personally compiled in-person voter turnout directly from state 
and county election agencies where available. Turnout data were not 
available for Colorado (CO), IA, Kentucky (KY), Massachusetts (MA), 
Michigan (MI), Minnesota (MN), Mississippi (MS), Missouri (MO), Mon-
tana (MT), Nevada (NV), New York (NY), Oklahoma (OK), Pennsylvania 
(PA), Rhode Island (RI), South Dakota (SD), Utah (UT) and West Virginia 
(WV); consequently, these states were estimated as a separate category 
in models that apply turnout data (these results are below, but not in 
the main manuscript).

In addition, we drew on elections data for the 5 January 2021 US 
Senate special election in GA from the US Elections Project97, includ-
ing the in-person turnout in each county, the overall turnout rate and 
the number of mail-in ballots. Turnout data for the NJ gubernatorial 
election were drawn from the Department of State of New Jersey’s 
Department of Elections98, and turnout data for the VA gubernatorial 
election were pulled from the Virginia Department of Elections99. 
In each case, the in-person voter turnout rate was calculated as the 
number of in-person ballots case divided by the county population.

Donald Trump’s campaign rallies. We used a list of Trump rallies from 
6 June 2020 to 2 November 2020, compiled directly from traditional 
media sources, for a total of 67 individual rallies across the country. On 
some days, multiple rallies were held in multiple locations and some 
locations were repeated across the data over time. In each case, we han-
dled a county as treated on a particular day if a rally occurred. Because 
it is likely that many rally attendees travelled across county lines from 
rural more Republican counties to the comparatively urban and central 
rally locations, we also employed US county adjacency data from the 
US Census100 to account for spillover effects to neighbouring counties.

US census. We drew county-level demographic data from the 2014–
2018 Five-Year American Community Survey from the US Census 
Bureau101. Specifically, we constructed estimates of the percentage 
of African American, percentage of Hispanic, log median income, 

population density (persons per square mile), percentage of those 
at least 65 years old and Donald Trump’s share of the vote in the 2016 
general election.

The New York Times masking behaviour survey. The county-level ten-
dency to wear a mask was drawn from a survey conducted by The New 
York Times102 between 2 and 14 July 2020, consisting of over 250,000 
individual responses weighted by age and gender. Respondents were 
asked “How often do you wear a mask in public and when you expect to 
be within six feet of another person?” and given the option to answer 
‘never’, ‘rarely’, ‘sometimes’, ‘frequently’ or ‘always’. We constructed 
the tendency to never or rarely wear a mask as the sum of ‘never’ and 
‘rarely’ percentages by county. We did not make use of this data for 
covariate matching in our general analyses since the survey was con-
ducted amid the primary elections. Specifically, we used this data for 
a supplementary analysis of the GA special election.

Software and code. Analysis was conducted in the Julia programming 
language103 (v.1.7.1) with the ‘TSCSMethods’ Julia package104 (which 
we are pleased to release). Additional paper replication materials are 
available on GitHub as the ‘COVIDPoliticalEvents’ Julia package. Data 
cleaning, preparation and additional analysis were carried out with the 
R programming language105 (v.4.0.3). The map in Fig. 1 was made with 
the ‘urbnmapr’ R package106.

Generalized difference-in-differences estimation for COVID-19
Modellers of COVID-19 and interventions that affect its spread face 
a methodological dilemma: whether to apply an epidemiological or 
causal statistical method. The first includes compartmental models 
(for example, Susceptible-Exposed-Infectious-Recovered models), 
which face serious difficulties with identification72 and reliance upon 
estimated epidemiological parameters that may change as the pan-
demic unfolds, increasing the complexity of the process model. In such 
models, the estimated parameters may identify descriptive quantities, 
but they may not identify the causal parameters that would undergird 
an effective policy response.

The second brushes against the limitations of many common sta-
tistical approaches. Existing statistical analyses of the impact of NPIs 
on the spread of COVID-19 apply either interrupted time-series design38 
or difference-in-differences estimation71. Both of these approaches 
rely on the assumption that without the intervention, the spread of 
COVID-19 could have been predicted from the model fit to the process 
from the pre-intervention period, ruling out other time-varying factors 
that could confound the relationship between the interventions and 
the spread. Furthermore, these approaches assume that the outcome 
is a linear process, which is often inappropriate in the context of an 
infectious disease that is characterized by a nonlinear trend. In practi-
cal terms, these methods may falsely attribute natural changes in the 
course of the epidemic to a particular intervention.

Specifically, interrupted time-series methods typically (1) do not 
control for an underlying trend not caused by the intervention, or rely 
on specification of its correct functional form107, such as the underlying 
contagion process of an infectious disease and (2) simply rule out the 
possibility of unmeasured factors causing a given effect. Specifically, 
refs. 37,38 attempted to resolve (1) through fixed-effects models that 
indirectly account for the contagion process as reduced-form models 
justified on the assumption that the proportion of susceptible indi-
viduals approaches unity. However, we did not find this assumption 
justified in our setting, given the absence of reliable testing data in the 
USA (which severely underestimates the number of active cases)31 and 
a study time-horizon that ranges from March 2020 to November 2021, 
over every phase of the pandemic.

On the other hand, difference-in-differences methods do control 
for an underlying trend not caused by the intervention, by relying 
on the common trend assumption108. In addition, more advanced 
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difference-in-differences strategies rely on regression adjustment 
or matching to allow for unobserved time-invariant factors109–111. 
However, traditionally, they do not account for time-varying 
imbalances, or the existence of a nonlinear data-generating pro-
cess. The approach here is more in line with recent approaches for 
difference-in-differences methods in less restrictive settings109,112. 
Instead, both difference-in-differences and interrupted time series 
applied to COVID-19 often assume that cases are log-linear30,37,38,61,71,74,113,  
which induces bias, especially when the mean counts are low and over-
dispersed, which holds true in our county-level daily death data. Our 
data are also strongly zero-inflated, limiting the utility of traditional 
count models. In addition, the fact that many counties have zero deaths 
over portions of our study time-horizon precludes the estimation of 
traditional epidemiological models to assess the impact of our inter-
ventions. Practically, these methods induce bias that might lead to a 
spurious assignment of causal pathways, which might in turn prompt 
inappropriate policy responses.

To avoid relying on parametric models for the dynamics of COVID-
19 and in the wake of the above difficulties, we modified and applied a 
non-parametric, generalized difference-in-differences estimator with 
a matching procedure for time-series cross-sectional data to estimate 
the average effect of the treatment on the treated (ATT). We did so by 
extending an approach from ref. 35 in a novel way. In particular, we 
defined different causal parameters that are more meaningful for this 
setting and implemented a sliding time window to find matches for 
units that can be considered ‘treated’ at each timepoint. Our approach 
may be applied in any setting governed by a nonlinear contagion pro-
cess, where the ‘treatment’ occurs in a limited time frame or is repeated 
over time (time-varying treatment) and its occurrence varies across 
the population. Furthermore, each of the event types we analysed 
presents different challenges that require alteration of our estimation 
procedure: in the case of the Trump rallies, we assumed the presence of 
spillover effects, and in the case of the BLM rallies, we had many units 
with multiple treatment-like protests within a narrow time window.

Our difference-in-differences approach measures the average 
effect of an event on the observations where the event actually occurred 
(ATT), by comparing the outcome change over time across matched 
units in different treatment groups. The difference-in-differences strat-
egy requires that in the absence of the event, the outcome would have 
followed the same trend in the treated and control arms. Nonetheless, 
our approach makes less stringent assumptions than many traditional 
approaches for the estimation of causal effects with panel data. As 
opposed to the standard difference-in-differences estimator, this 
method relies on a parallel trend assumption only after conditioning 
on both baseline and time-varying covariates before the intervention, 
including the pre-treatment outcome history. In addition, covariate 
adjustment is conducted using a matching procedure. This approach 
also allows for time-varying treatments that can occur multiple times 
over the observed window. Our approach is presumably novel in apply-
ing such a method to epidemic data and could constitute a new general 
strategy for research on the effects of single or intermittent events on 
a contagion.

In our analysis, a unit is the entire time series of a US county (or 
county equivalent). A unit is treated on a specific day if it holds an 
event of interest (for example, an election, rally or protest) on that 
day. For such a given treated observation, we matched on that county’s 
characteristics for 30 d before treatment, up to 1 d before treatment. 
We contrasted the treated and matched unit’s outcome for each day 
in an outcome window defined as 10–40 d after an event, which is the 
epidemiologically informed period in which we would expect an effect 
on the mortality rate from an event where contagion may occur. Given 
the underlying contagion process, it was not reasonable to assume that 
the effect of any intervention on the epidemic reverses itself, but rather 
alters the epidemic trajectory in perpetuity. However, we allowed units 
with previous treatments to serve as eligible controls for a treatment 

event, under specific conditions. For each day that we estimated on the 
period from 10 to 40 d, matched counties must have a similar treatment 
history to the treated unit during the pre-treatment crossover window 
and have no treatment during the post-treatment crossover window 
(detailed below). Consequently, we separately matched units to a 
treated observation for each day in the outcome window.

We did not match on treatment history before the pre-treatment 
crossover period since we considered deaths after day 40 to be endog-
enous to the contagion process. The outcome window period repre-
sents the first wave of deaths that would be expected to occur due 
to first-hand infection at the event. Since these first-wave deaths are 
caused by an exogenous shock (for example, an election, rally or pro-
test), they cannot be predicted from the observed death rate alone. 
However, deaths that occurred beyond 40 d are likely second-wave 
deaths, which are predictable from the observed death rate. Thus, 
we considered deaths past 40 d to be endogenous to the contagion 
process, allowing similarity matching based on the death rate to 
account for the effects of treatment events that occurred before the 
pre-treatment crossover period.

In addition, we restricted our outcome window to the expected 
first wave of deaths because estimation over a longer outcome win-
dow risks confounding by events that may occur and thereby sepa-
rately alter the epidemic trajectory in our treated or control counties. 
Consequently, there arises a risk of misattributing the effect of such 
events to the treatment considered. We thus face a trade-off between 
capturing the long-run effects of an intervention (that is, an election, 
rally or protest) and applying a shorter outcome window to avoid 
post-treatment confounding. Hence, we restricted our procedure to 
the period in which 90% of the first-wave deaths would occur due to 
transmission on the day of treatment.

Thus, we took the treatments to influence the outcome from 10 
to 40 d after a given treatment, corresponding to the 5th and 95th 
percentiles of the distribution of times from infection to death. The 
distribution of times from infection until death comes from empirical 
estimates in the epidemiological literature and is modelled as the sum 
of two gamma distributions (Fig. 1):

π ∼ Gamma(5.1,0.86) + Gamma(17.8,0.45) (1)

Identification of the ATT
We defined Xi,t to be the treatment for unit i on day t, valued Xi,t = 1 when 
the unit is treated on day t (it holds an event of interest), and 0 other-
wise. On the basis of this outcome window, we assumed that the poten-
tial outcome of each unit i at day τ depends on the event history in a 
carry-over window, that is, Fmax days to Fmin days before τ, with Fmax > Fmin. 
That is, the outcome, Yi,τ, at τ depends on interventions Xi,q , with 
q ∈ {τ − Fmax,…0,… , τ − Fmin}, that is, Yi,τ ({Xi,q}

τ−Fmin
q=τ−Fmax

).
We then contrasted the average potential outcome at time t + F, 

for a treatment at time t, with the average potential outcome at time 
t + F without treatment at time t, where F ∈ {Fmin, Fmin + 1, Fmin + 2,… , Fmax}. 
In particular, our interest lies in the following causal quantity, 
δ (F;Fmin, Fmax), the ATT:

δ(F; Fmin, Fmax) = E [Yi,t+F (Xi,t = 1, {Xi,t−l1 }
Fmax−F
l1=1

, {Xi,t+l2 }
F−Fmin
l2=1

)

−Yi,t+F (Xi,t = 0, {Xi,t−l1 }
Fmax−F
l1=1

, {Xi,t+l2 }
F−Fmin
l2=1

= 0) |Xi,t = 1]
(2)

with F ∈ {Fmin, Fmin + 1, Fmin + 2,… , Fmax} . The parameter δ (F;Fmin, Fmax)   
is the causal effect of a treatment event on day t on the death rate F days 
after t, compared to not having a treatment event on day t and in the 
post-treatment carry-over window affecting day t + F, when the 
sequence of treatment events are the same in the pre-treatment 
carry-over window, marginalized over the distribution of the treatment 
history after the treatment event at day t conditional on having the 
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treatment at time t. E refers to the expectation, and l1 and l2 iterate over 
the pre- and post-treatment carry-over windows, respectively.

We relied on two key assumptions:

 1. Non-interference between units. We assumed that there was 
no interference between counties over the study period. We 
assumed that an event that took place in a single county did not 
affect the death rate in other counties, at least over the time 
frame we considered.

 2. Parallel trends, conditional on treatment, covariate and 
outcome histories for Fmax days before the day of the elections. 
This assumption relaxes sequential ignorability, the condition 
that the treatment assignment is unconfounded, conditional on 
the covariate and outcome history up to t − Fmax. Instead, we 
allowed for the presence of unobserved confounding variables. 
The parallel trend assumption holds conditionally on the 
treatment, covariate and outcome histories for Fmax days before 
treatment administration.

The ATT was estimated over a range of days F ∈ { Fmin, Fmin   
+1, Fmin + 2,… , Fmax }, corresponding to the outcome (carry-over) win-
dow over which we expected treatment effects to occur. We chose 
Fmin = 10 and Fmax = 40 as the 5th and 95th percentiles, respectively, of 
the distribution of the number of days from infection to death. This 
window captures the first wave of deaths expected from an exogenous 
shock (that is, an election, rally or protest).

County matching procedure
The matching procedure contained three steps: restriction on the 
treatment history of each county to determine the set of allowable 
matches, distance matching based on chosen covariates and matching 
refinement from the set of allowable matches.

Selection of eligible matches based on treatment history. The defi-
nition of our ATT implies that for treatment day t and outcome day t + F, 
treated units (that had the treatment on that day) should be compared 
with control units that had no treatment events on day t or during the 
post-treatment crossover window for t + F, that is, (t, t + F – Fmin). Dur-
ing the pre-treatment crossover window (t + F – Fmax, t – 1), units were 
matched on their treatment histories. In the case of a single treatment 
per unit (the elections), this means that eligible matches must have 
zero treatments over the pre-treatment crossover period, as in the 
treated unit. In the multiple treatment scenarios (the rallies and the 
protests), we performed an inexact match on the basis of the similarity 
of number of treatments that occurred in the pre-treatment crossover 
period between a potential match and the treated unit. In particular, we 
discretized the number of treatments in the pre-treatment crossover 
period and allowed a match when the potential match and the treated 
unit fell into the same treatment category. For the BLM protests, we 
defined the categories as: both have 0 previous treatments, both have 
1–2 previous treatments, both have 3−9 previous treatments and both 
have 10 or more previous treatments. Separately, for the rallies, cat-
egories were defined similarly, but with additional accounting for the 
level of treatment exposure to neighbouring counties (see ‘Selection 
of eligible matches based on treatment history with spillover effects’).

Matching refinement via distance matching based on chosen 
covariates. After applying these conditions on the treatment history, 
we conducted distance matching on the basis of a set of county-level 
time-invariant demographic characteristics, time-varying social dis-
tancing mobility data, and features of the epidemic at the county level 
relevant to behaviour and the spread of COVID-19.

Generally, the length of the matching period for time-varying 
covariates is subject to a bias–variance trade-off: choosing a longer 
period on which to match decreases the possible bias of the model, 
insofar as treated and matched counties are increasingly similar with 

respect to the overall COVID-19 trend. However, a longer lag period 
leads to greater difficulty in matching, increasing the variance of  
the estimator.

After selecting eligible control counties, we looked for counties 
that are similar to the treated county with respect to demographic 
and epidemiological characteristics from 30 d before, up to 1 d before 
the primary election. We picked this fixed period to ensure that we 
always matched on a 30 d period, regardless of F. We applied the fixed 
window since the covariate histories additionally reflect general infor-
mation about a county’s tendency to have interpersonal contact (for 
the mobility covariates) and information about where the county falls 
with respect to its epidemic trajectory (in the case of the cumulative 
death rate). We did not use the pre-treatment crossover period as the 
window for covariate matching because this shortens as F increases. 
Using the pre-treatment crossover window as the sole basis for covari-
ate matching would imply that unit similarity over the fixed-length 
period decreases in importance as F increases.

In the matching procedure, we included movement specifically at 
full-service restaurants, grocers, and fitness and recreation facilities 
because they have been identified as high-risk locations for COVID-19 
transmission28,41. We did not explicitly include indicators for NPIs (for 
example, stay-at-home orders or their retractions) or other large-scale 
events. We note that there is no comprehensive data source on closures 
or their lifting at the county level. Moreover, these orders were haphaz-
ard and not consistently enforced. That is, a stay-at-home order in one 
county may have been highly effective but ignored in another114 (these 
trends probably relate to political and demographic characteristics 
such as racial composition, socio-economic status and political views, 
for which we did adjust). Furthermore, adherence to the NPIs is crucial 
to their role in altering transmission. Consequently, it has been argued 
that mobility patterns are more directly linked to transmissibility 
than the NPIs and may be used in place of the NPIs themselves91 or to 
evaluate their effectiveness115. Mobility is frequently used in models 
of COVID-19 transmissibility116. In line with this, numerous studies 
have found a strong link between transmissibility, NPI measures and 
mobility patterns42,117–120. Mobility is not a perfect measure of transmis-
sibility and has the strongest relationship to transmissibility during 
the earlier phases of the pandemic when NPIs were being aggressively 
implemented33,92,121. Consequently, in light of these considerations, we 
believe we have effectively adjusted (to some extent) for confounders 
that could arise from NPIs or other large events, especially in tandem 
with our other covariates. Specifically, we focused on broad mobility 
categories that have been demonstrated to be linked to COVID-19 
transmission: visits to restaurants, fitness and recreation facilities, and 
grocery stores41, which we believe are relevant to our primary analysis 
of large-scale gatherings in general.

In addition, we used the following county-level socio-demographic 
variables: (log) median income, percentage of people 65 years old and 
above, percent African American, percent Hispanic, population density 
and Donald Trump’s share of the vote in the 2016 presidential election. 
These demographic characteristics may be relevant to how people 
behave, which in turn may affect the spread of the virus: for example, 
counties in which Trump had a higher share of the vote may be less 
likely to practice social distancing; counties with a higher percentage 
of African Americans or that are lower in terms of median income may 
have a greater share of essential workers11,122. In addition, to adjust 
for the features of the epidemic, we adjusted for the date of the first 
reported infection in that county, as well as one time-varying feature, 
namely, the cumulative county-level death rate. Note that matching on 
the cumulative death rate implicitly contains information about the 
whole history of the epidemic trend, adjusting not only for the daily 
deaths over the lag period, but also for the total deaths accrued over 
the reporting window. We think that this adjustment better matches 
counties in terms of their COVID-19 trends. Finally, we additionally 
matched on the county-level propensity to wear a mask for the GA 
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special election, and the NJ and VA gubernatorial elections, which took 
place after this survey data were collected, to further adjust attitudes 
and behaviour regarding COVID-19.

Under matching refinement, we selected at most five units that 
are the most similar to the treated unit during the matching period in 
terms of Mahalanobis distance:

Si,t (i′) =
1
L

L

∑
l=1

√(Vi,t−l−Vi′,t−l )
T
Σ

−1
i,t−l (Vi,t−l − Vi′,t′l) (3)

where the beginning of the matching window before a treatment is 
given by L = 30. We note that i′ ∈ Mi,t  is a unit in the set of potential 
matches to a treated unit i, Vi,t′ is the set of time-varying covariates  
for which we adjusted in the pre-treatment lag period and Σi,t′ is the 
diagonal of the sample covariance matrix. The distance was computed 
for each potential match for each day in the pre-treatment lag period, 
which was then averaged over that period (from t − 30 up to t − 1).

Subsequently, we calculated the covariate balance as the standard-
ized mean difference between the treated and control units across all 
counties used in the analysis:

Bi,t( j, l) =
Vi,t−l, j −∑i′∈Mi,t

wi′
i,tVi′,t−l, j

√
1

N1−1
∑N

t′=1∑
T

t′=L+1Di′,t′(Vi′,t′−l, j − V̄t′−l, j)
2

(4)

where N1 is the total number of treated observations and Vi,t,j  repre-
sents the jth covariate of unit i on day t. The quantity wi′

i,t  represents the 
weight given to match i′ for control unit i at t. Note that w = 0 for each 
i′ that is not a match for the control unit. Finally, B( j, l) is simply the 
average balance over the treated units:

B̄( j, l) = 1
N1

N

∑
i=1

T

∑
t=L+1

Di,tBi,t( j, l) (5)

where N is the total number of units, T is the total number of periods 
and Di,t indicates whether unit i is treated at t.

Caliper matching. In addition, we imposed a caliper to ensure suffi-
cient covariate balance for estimation. We calculated the standardized 
Euclidean distance between each pair of matching covariates given 
by the treated and control units over the matching period and took 
the matching period average. We then applied a caliper threshold to a 
chosen set of covariates, rejecting a potential match unit if its distance 
is above the threshold on a chosen covariate. Caliper values are speci-
fied in terms of standardized Euclidean distances between the values 
of specific matching covariates.

In particular, calipers were applied individually to specific match-
ing covariates as needed, to ensure that covariate (im)balance remains 
below 0.1 on average over the matching period. In addition, all models 
included a caliper of 0.25 on the cumulative death rate (or cumulative 
case rate as appropriate to the model), since this is the crucial covari-
ate to ensure that the epidemic trajectories are similar between the 
treated units and their matches. The value of 0.25 is a standard recom-
mendation in the matching literature123–125; however, we checked the 
sensitivity to stricter calipers in Supplementary Information Section 
2.5. This procedure removes potential matches since they may fail to 
satisfy the distance requirement. When a treated observation retained 
zero matches, it was removed entirely from estimation. Thus, a caliper 
might meaningfully reduce the number of treated units. For each set 
of model results, we present the number of treated observations that 
remained after the application of a caliper, out of the initial number 
(see below for details). In cases where we were unable to find a set of 
matches to the treated units with a sufficiently low balance score (below 
0.1 on average over the pre-treatment matching period), we dropped 
the mobility covariates and matched on the remaining variables. Plots 

that display the balance scores for each of the models in the main text 
are available in Supplementary Information Section 3. The mobil-
ity models had the same balance scores as the respective death rate 
models for each event.

This was the case for ten models: the Trump vote share, in-person 
turnout, and mask behaviour stratified models and the overall model 
for the GA election; the NJ and VA gubernatorial election model, the 
model for Donald Trump’s rallies accounting for spillover effects; 
the model for Donald Trump’s rallies stratified by Donald Trump’s 
share of the vote in 2016 and accounting for spillover effects; the 
number-of-recent-protests stratified model, the protest-size strati-
fied model, and the overall model for the protests; and the transmis-
sibility model for the GA special election. In addition, the date of the 
first case was dropped from the NJ and VA election analyses since 
these occurred in a much later phase of the pandemic; also, visits to 
full-service restaurants was the only included mobility variable in this 
model since we were unable to find sufficient balance with the full set 
of matching covariates.

Difference-in-difference estimator and Bayes factors
For N units and T total days in a dataset, our difference-in-difference 
estimator of the ATT is given by

δ̂(F ) = 1
∑N

i=1∑
T

t=1Di,t

N

∑
i=1

T

∑
t=1
Di,t {(Yi,t+F − Yi,t−1) − ∑

i′∈Mi,t

wi′
i,t(Yi′,t+F − Yi′,t−1)}

(6)

which captures the average of the average difference in the change in 
the daily death rate (Yi,t), from the day before treatment (t − 1) to a 
post-treatment timepoint (t + F) between a treated unit and its control 
counties. Di,t = 1 defines a unit i treated at t with at least one matched 

control unit i′ ∈ Mi,t. wi′
i,t =

1
|Mi,t |

 is the match weight, with the number of 

matches in the set of matches to the treated observation denoted by 
|Mi,t|. We constructed confidence intervals with a weighted 
block-bootstrap procedure appropriate for panel data with a fixed 
number of matches, which accounts for the number of times that a unit 
is used as a match and samples units rather than observations126 (details 
presented below). All confidence levels presented are at the 95% sig-
nificance level.

The overall estimates presented for each of the main models are 
simple arithmetic means of the individual estimates for each day in 
the post-treatment outcome window. The confidence intervals for the 
overall estimates were taken by aggregating the bootstrap distribution 
across the individual estimates (see ‘Bootstrap procedure’ below). In 
addition, for key models, we present Bayes factors to provide more 
information about the relative evidence for the null and alternative 
hypotheses in our analyses. In contrast to P values, the Bayes factor 
is able to quantify evidence in favour of the null hypothesis127. In each 
case, we calculated the Bayes factor for the alternative hypothesis (B10), 
where increasingly small numbers below 1 indicate stronger evidence 
for the null hypotheses over the alternative. We calculated the Bayes 
factors using Gaussian quadrature, using the estimated mean and 
variance from the bootstrap distribution for the ATT (see below) to 
calculate a statistic for a classical t-test128,129.

Spillover effects
Voting is a fundamentally ‘local’ activity and individuals typically do 
not travel outside of their neighbourhood to cast a ballot, let alone 
across county lines. Furthermore, mobility in the spring and summer 
of 2020 was below usual levels, in the wake of stay-at-home orders and 
an increase in the number of individuals working from home. With 
respect to the BLM protests, we note that larger protests are more likely 
to occur in highly urban areas, with a larger concentration of young 
individuals whose politics tend to align with the protests themselves.  
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In contrast, surrounding suburban areas tend to be more Republican 
leaning (Supplementary Fig. 36) and less likely to have high concen-
trations of protesters. Thus, we assumed that the protests are also 
an activity that is local in nature. Consequently, we believe that it is 
unlikely for an election or protest held in a single county to yield an 
increase in infections in other counties over the study follow-up period 
we considered.

While assumption (1) (above in ‘Identification of the ATT’) is clearly 
not justified in general for the spread of COVID-19, we assumed that 
it holds for the election and protest events over the time horizon we 
used. Specifically, we assumed that it does not hold in the case of Trump 
rallies, as individuals may have travelled from surrounding counties 
to attend the rallies. This is especially plausible given that the rallies 
themselves tended to be in more Democratic-leaning areas than sur-
rounding counties (Supplementary Fig. 36). We allowed for the pres-
ence of spillover effects up to three counties away from the location 
of a Trump rally, on the logic that individuals may travel up to several 
hours to attend a rally.

We generalized the ATT to account for interference from neigh-
bouring counties (Supplementary Fig. 37). We denoted by Gi,t  the  
exposure variable representing whether unit i at time t is directly 
exposed to treatment or indirectly exposed to the treatment of neigh-
bouring counties. Specifically, when Gi,t = 1, a unit i is directly treated 
at t, having an event within its county borders at time t, regardless of 
the treatment of neighbouring counties; when Gi,t = 2, county i is not 
directly treated but it is the first degree neighbour of a county that 
holds an event at t (geographically adjacent); when Gi,t = 3, county i is 
not directly treated and does not have adjacent counties treated, but 
it is the second degree neighbour of a county that holds an event at t 
(one county away); when Gi,t = 4, county i is the third degree neighbour 
of a county that holds an event at t (two counties away). Gi,t = 0 when  
a county i at day t is not directly treated and is at least three counties 
away from one that holds an event at t.

Consequently, we took Gi,t  as the treatment exposure for unit i on 
day t, valued Gi,t > 0 when the unit is treated on day t (it holds or is near 
an event of interest), and 0 otherwise. On the basis of this outcome 
window, we assumed that the potential outcome of each unit i at day τ 
depends on the event history in a carry-over window, that is, Fmax days 
to Fmin days before T, with Fmax > Fmin. That is, the outcome at τ depends 
on interventions Gi,q , with q ∈ {τ − Fmax,…0,… , τ − Fmin} , that is, 
Yi,τ ({Gi,q}

τ−Fmin
q=τ−Fmax

).
In this setting, the ATT becomes:

δ(g, F; Fmin, Fmax) = E [ Yi,t+F(Gi,t = g, {Gi,t−l1 }
Fmax−F
l1=1

, {Gi,t+l2 }
F−Fmin
l2=1

)

−Yi,t+F(Gi,t = 0, {Gi,t−l1 }
Fmax−F
l1=1

, {Gi,t+l2 }
F−Fmin
l2=1

= 0)|Gi,t = g ]
(7)

where g ∈ {1, 2, 3,4} represents the treatment exposure category. Here, 
1 represents direct exposure to treatment; values from 2 to 4 represent 
indirect exposure via neighbouring treatments.

While estimation of the total effect included spillover from 
treated units onto untreated units130, we ignored this possibility, sim-
ply averaging within different exposures among treated units. This 
assumption is plausible if we assume that many attendees travel from 
Republican-leaning counties to the rally locations and that attendees 
do not typically attend more than one rally on a single day. After match-
ing, four sets of ATTs were estimated, one set for each level of exposure.

Selection of eligible matches based on treatment history with 
spillover effects. As above (‘Selection of eligible matches based on 
treatment history’), we discretized the number of treatments in the 
pre-treatment crossover period and allowed a match when the potential 
match and the treated unit fell into the same treatment category. For the 
rallies, categories were defined similarly, but with additional account-
ing for the level of treatment exposure to neighbouring counties.  

For treated units, eligible matches were selected on the basis of treat-
ment history criteria that accounted for exposure. Specifically, we 
allowed a match if it is in the same category as the treatment for each 
exposure type, where the categories are defined as having zero versus 
one or more previous treatments within 30 d of the treatment.

Stratification
We additionally stratified our estimation on the basis of properties of 
the treated observations (for example, population density, in-person 
turnout rate). These models applied the standard matching procedure 
but separated treated observations and their matches into different 
strata; the ATTs in each stratum were estimated separately.

Bootstrap procedure
The entire time series of a unit was resampled to account for within-unit 
dependence over time, in a weighted block-bootstrap design. This 
method accounts for matching with a fixed number of units and the 
use of a matched unit for more than one treated observation, through 
the calculation of observation weights35:

W∗
i,t =

N

∑
i′=1

T

∑
t′=1

Di′,t′v
i′,t′
i,t (8)

where

vi′,t′
i,t =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

1 if(i, t) = (i′, t′ + F )

−1 if(i, t) = (i′, t′ − 1)

−wi
i,t′ if i ∈ Mi′,t′&(i′, t′ + F )

wi
i,t′ if i ∈ Mi′,t′&(i′, t′ − 1)

0, otherwise

An observation’s weight was assigned to 1 if it is a treated observation 
and fell within the outcome window. It was valued at −1 in the case of 
the period immediately before the focal treatment. An observation 

that is not treated was assigned a non-zero weight wi′
i,t =

1
||M∗

i,t
||
 when 

i′ ∈ M∗
i,t , that is, when it fell into the outcome window, or the period 

preceding the treatment for a focal treatment observation. Reference 
35 notes that the estimator may alternatively be calculated using the 
observation weights as:

N

∑
i=1

T

∑
t=1
W∗
i,tYi,t

N

∑
i=1

T

∑
t=1
Di,t

(9)

Consequently, in the bootstrap, we sampled units and then calcu-
lated this quantity for each bootstrap sample. We took our confidence 
intervals from percentiles 2.5 and 97.5 of the distribution formed from 
10,000 resamples.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data on COVID-19 case and death counts are available from the 
Johns Hopkins Coronavirus Resource Center (https://coronavirus. 
jhu.edu/data). US Census data are also publicly available (https:// 
www.census.gov/programs-surveys/acs). The mobility tracking data 
are available from SafeGraph, Inc. and are freely available to academic 
researchers (https://www.safegraph.com/products/places). The elec-
tions turnout data are available directly from state governmental 
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election agencies. The protest event data are available as the US Cri-
sis Monitor dataset from the Armed Conflict Location & Event Data 
Project (https://acleddata.com/special-projects/us-crisis-monitor/). 
County-level masking data are available from The New York Times 
GitHub repository (https://raw.githubusercontent.com/nytimes/ 
covid-19-data/master/mask-use/mask-use-by-county.csv).

Code availability
Data cleaning and preparation was carried out with the R program-
ming language106. All analysis was conducted in the Julia programming 
language105 with the ‘TSCSMethods’ Julia package104 (https://github. 
com/human-nature-lab/TSCSMethods.jl). In addition, paper replica-
tion materials are available on GitHub as the ‘COVIDPoliticalEvents’ 
Julia package (https://github.com/human-nature-lab/COVIDPoliti 
calEvents.jl).
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Extended Data Fig. 1 | Pre-outcome-window ATTs. ATTs for the death and case 
rates, from 30 days before treatment up to the 9 days after treatment. The light 
green cell is the day of treatment, and the dark grey cell is the reference day for 
the ATT calculation (see Methods). In each panel, the error bars indicate the 
95% CIs. The panels present the ‘average treatment effect on the treated’ (ATT) 

estimates for the (a) omnibus analysis, (b) the primary elections, (c) GA special 
election, (d) NJ & VA gubernatorial elections, (e) Donald Trump’s political rallies, 
and (f ) the BLM protests. In each case, we observe results that are similar to those 
for the corresponding main analysis; that is, generally non-significant results, 
which is expected for the period prior to treatment.
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Extended Data Fig. 2 | Omnibus estimates for the effect of political events on 
the death rate. (a) Overall ATT estimates and covariate balance before matching 
refinement. (The ATTs represent the average difference in the change in death 
rates, from the day before treatment to 10 to 40 days after an election. The 
pre-refinement covariate balance for each matching covariate. All covariates are 
measurements at the county level. The balance score is the average standardized 
mean difference between the treated and control units, over a matching 
period from 30 days before to 1 day before treatment. There are 2135 treated 
units present. (b) Overall ATT estimates and covariate balance after matching 

refinement, to no more than the five best matches to each treated county.  
(c) Overall ATT estimates and covariate balance before matching refinement and 
after the application of a caliper. (d) Overall ATT estimates and covariate balance 
after the application of a caliper, and after matching refinement, the observed 
balance scores are, on average over the matching window, within the threshold 
of 0.1, indicating sufficient similarity between the treated and matched counties. 
On average, for estimates over the outcome window, 1449.4 treated units remain, 
with 6084.5 matches.
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Extended Data Fig. 3 | Omnibus estimates for the effect of political events on 
the case rate. (a) Overall ATT estimates and covariate balance before matching 
refinement. (The ATTs represent the average difference in the change in case 
rates, from the day before treatment to 10 to 40 days after an election. The 
pre-refinement covariate balance for each matching covariate. All covariates are 
measurements at the county level. The balance score is the average standardized 
mean difference between the treated and control units, over a matching 
period from 30 days before to 1 day before treatment. There are 2135 treated 
units present. (b) Overall ATT estimates and covariate balance after matching 

refinement, to no more than the five best matches to each treated county.  
(c) Overall ATT estimates and covariate balance before matching refinement and 
after the application of a caliper. (d) Overall ATT estimates and covariate balance 
after the application of a caliper, and after matching refinement, the observed 
balance scores are, on average over the matching window, within the threshold 
of 0.1, indicating sufficient similarity between the treated and matched counties. 
On average, for estimates over the outcome window, 1473.5 treated units remain, 
with 6305.4 matches.
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Extended Data Fig. 4 | Overall estimates for the primary elections. In each 
panel, the error bars indicate the 95% CIs. (a) Overall ATT estimates and covariate 
balance before matching refinement. (The ATTs represent the average difference 
in the change in death rates, from the day before treatment to 10 to 40 days after 
an election. The pre-refinement covariate balance for each matching covariate. 
All covariates are measurements at the county level. The balance score is the 
average standardized mean difference between the treated and control units, 
over a matching period from 30 days before to 1 day before treatment. There 
are 1173 treated units present. (b) Overall ATT estimates and covariate balance 

after matching refinement, to no more than the five best matches to each 
treated county. (c) Overall ATT estimates and covariate balance before matching 
refinement and after the application of a caliper. (d) Overall ATT estimates 
and covariate balance after the application of a caliper, and after matching 
refinement, the observed balance scores are, on average over the matching 
window, within the threshold of 0.1, indicating sufficient similarity between 
the treated and matched counties. On average, for estimates over the outcome 
window, 961.2 treated units remain, with 4283.8 matched units.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-023-01654-1

Extended Data Fig. 5 | Overall estimates for the GA elections. In each panel, the 
error bars indicate the 95% CIs. (a) Overall ATT estimates and covariate balance 
before matching refinement. (The ATTs represent the average difference in the 
change in death rates, from the day before treatment to 10 to 40 days after an 
election. The pre-refinement covariate balance for each matching covariate. 
All covariates are measurements at the county level. The balance score is the 
average standardized mean difference between the treated and control units, 
over a matching period from 30 days before to 1 day before treatment. There 
are 159 treated units present. (b) Overall ATT estimates and covariate balance 

after matching refinement, to no more than the five best matches to each 
treated county. (c) Overall ATT estimates and covariate balance before matching 
refinement and after the application of a caliper. (d) Overall ATT estimates 
and covariate balance after the application of a caliper, and after matching 
refinement, the observed balance scores are, on average over the matching 
window, within the threshold of 0.1, indicating sufficient similarity between 
the treated and matched counties. On average, for estimates over the outcome 
window, 137 treated units remain, with 566 matched units.
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Extended Data Fig. 6 | Overall estimates for the NJ and VA gubernatorial 
elections. In each panel, the error bars indicate the 95% CIs. (a) Overall ATT 
estimates and covariate balance before matching refinement. (The ATTs 
represent the average difference in the change in death rates, from the day 
before treatment to 10 to 40 days after an election. The pre-refinement 
covariate balance for each matching covariate. All covariates are measurements 
at the county level. The balance score is the average standardized mean 
difference between the treated and control units, over a matching period from 
30 days before to 1 day before treatment. There are 154 treated units present. 

(b) Overall ATT estimates and covariate balance after matching refinement, 
to no more than the five best matches to each treated county. (c) Overall ATT 
estimates and covariate balance before matching refinement and after the 
application of a caliper. (d) Overall ATT estimates and covariate balance after 
the application of a caliper, and after matching refinement, the observed 
balance scores are, on average over the matching window, within the threshold 
of 0.1, indicating sufficient similarity between the treated and matched 
counties. On average, for estimates over the outcome window, 141 treated units 
remain, with 649 matched units.
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Extended Data Fig. 7 | Estimates for Donald Trump’s rallies, stratified by 
exposure (without caliper). (a) Overall ATT estimates and covariate balance 
before matching refinement, for each stratum. (The ATTs represent the average 
difference in the change in death rates, from the day before treatment to 10 to 40 
days after an election. The pre-refinement covariate balance for each matching 
covariate. All covariates are measurements at the county level. The balance score 
is the average standardized mean difference between the treated and control 

units, over a matching period from 30 days before to 1 day before treatment. 
The number of treated units in each stratum are on average, over the outcome 
window. For Treatment, there are 67 treated units; for Degree 1, there are 397 
treated units; for Degree 2, there are 788 treated units; for Degree 3, there are 1156 
treated units. (b) Overall ATT estimates and covariate balance after matching 
refinement, to no more than the five best matches to each treated county, for 
each stratum.
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Extended Data Fig. 8 | Estimates for Donald Trump’s rallies, stratified by 
exposure (with caliper). In both panels, the error bars indicate the 95% CIs. 
(a) Overall ATT estimates and covariate balance before matching refinement, 
for each stratum. (The ATTs represent the average difference in the change in 
death rates, from the day before treatment to 10 to 40 days after an election. The 
pre-refinement covariate balance for each matching covariate. All covariates are 
measurements at the county level. The balance score is the average standardized 
mean difference between the treated and control units, over a matching period 

from 30 days before to 1 day before treatment. The number of treated units in 
each stratum are on average, over the outcome window. For Treatment, 58.2 
treated units remain; for Degree 1, 363.4 treated units remain; for Degree 2, 713.3 
treated units remain; for Degree 3, 1055.1 treated units remain. Respectively, 
with 251.8, 1679, 3290.9, 4280.4 matches. (b) Overall ATT estimates and covariate 
balance after matching refinement, to no more than the five best matches to each 
treated county, for each stratum.
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Extended Data Fig. 9 | Overall estimates for the BLM protests. In each panel, 
the error bars indicate the 95% CIs. In each panel, the error bars indicate 
the 95% CIs. (a) Overall ATT estimates and covariate balance before matching 
refinement. (The ATTs represent the average difference in the change in death 
rates, from the day before treatment to 10 to 40 days after an event. The pre-
refinement covariate balance for each matching covariate. All covariates are 
measurements at the county level. The balance score is the average standardized 
mean difference between the treated and control units, over a matching period 
from 30 days before to 1 day before treatment. On average, for estimates over 

the outcome window, 658 treated units are present. (b) Overall ATT estimates 
and covariate balance after matching refinement, to no more than the five best 
matches to each treated county. (c) Overall ATT estimates and covariate balance 
before matching refinement and after the application of a caliper. (d) Overall 
ATT estimates and covariate balance after the application of a caliper, and after 
matching refinement, the observed balance scores are, on average over the 
matching window, within the threshold of 0.1, indicating sufficient similarity 
between the treated and matched counties. On average, for estimates over the 
outcome window, 450.5 treated units remain, with 1901.7 matched units.
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Extended Data Fig. 10 | Political Event sizes. (a) Overall distribution of event 
sizes in the data, across event type. Large frequencies for specific values reflect 
the thresholding procedure used to estimate crowd sizes from different reports 
(see Methods). (b) Overall distribution of event sizes in the data, across each 

event type, represented as the percentage of the county population in which 
the event takes place. (c) Event sizes over the roughly two-year period that 
constitutes our study horizon, colored by event type. Event sizes are plotted on 
the natural log scale, labelled on the original scale (persons at event).
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relevant websites and cleaned with custom R or Julia code written for this project. All code used to obtain the data, and the links to the 
original data, are available in a Github repository COVIDPoliticalEvents (https://github.com/human-nature-lab/COVIDPoliticalEvents.jl).

Data analysis Data analysis was conducted in the Julia programming language, v 1.7.1, using two packages developed specifically for this analysis: 
TSCSMethods v 1.0 (https://github.com/human-nature-lab/TSCSMethods.jl); and COVIDPoliticalEvents v 1.0 (https://github.com/human-
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The raw data required for this work is publicly available, but had to be assembled. The data on COVID-19 case and death counts are available from the Johns 
Hopkins Coronavirus Resource Center (https://coronavirus.jhu.edu/data). US Census data is available also publicly available (https://www.census.gov/programs-
surveys/acs). Supplementary data, the USA County adjacency files and Census Region specifications, are also available from the US Census website. County-level 
masking data is available from the New York Times Github repository (https://raw.githubusercontent.com/nytimes/covid-19-data/master/mask-use/mask-use-by-
county.csv) The elections turnout data is available directly from state governmental election agencies. Data on the BLM protests is available from the Armed Conflict 
Location & Event Data Project (https://acleddata.com/), as the US Crisis Monitor dataset (https://acleddata.com/special-projects/us-crisis-monitor/). The mobility 
tracking data is available from SafeGraph, Inc. and is freely available to academic researchers through an academic license (https://www.safegraph.com/products/
places). Details and data files are contained the COVIDPoliticalEvents GitHub repository (https://github.com/human-nature-lab/COVIDPoliticalEvents.jl).
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Study description Epidemic disease can spread during mass gatherings. We assessed the impact on the local-area trajectory of the COVID-19 epidemic 
of a type of mass gathering about which comprehensive data were available. Here, we examined five types of political events in 2020 
and 2021: the US primary elections; the US Senate special election in Georgia; the gubernatorial elections in New Jersey and Virginia; 
Donald Trump’s political rallies; and the Black Lives Matter protests. Our study period encompassed over 700 such mass gatherings 
during multiple phases of the pandemic. We used data from the 48 contiguous states, representing 3,218 counties, and we 
implemented a novel extension of a recently developed non-parametric, generalized difference-in-difference estimator with a (high-
quality) matching procedure for panel data to estimate the average effect of the gatherings on local mortality and other outcomes. 
There were no statistically significant increases in cases, deaths, or a measure of epidemic transmissibility (Rt) in a 40-day period 
following large-scale political activities. We estimated quantitatively small and insignificant effects, corresponding to an average 
difference of -0.0567 deaths (95% CI: -0.319, 0.162), and 8.275 cases (95% CI: -1.383, 20.7), on each day, for counties that held mass 
gatherings for political expression compared to matched control counties. In sum, there is no statistical evidence of a material 
increase in local COVID-19 deaths, cases, or transmissibility after mass gatherings for political expression during the first two years of 
the pandemic in the USA. This may relate to the specific manner in which such activities are typically conducted.

Research sample The units of study consist of all mainland US counties. We analyze all major elections (held at the state level) for which there is 
treatment variation (excluding the national general election) over 2020 and 2021. We consider all major protest events occurring in 
the summer of 2020 (May 26 to October 10), covering the major timeline of the BLM protest movement. We consider all of Donald 
Trump's major campaign rallies in 2020.

Sampling strategy We did not employ a sampling strategy, since we include the whole population of mainland US Counties in our analysis. Further, we 
only analyze quantitative observational data.
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Data collection Our data was collected from authoritative, publicly available sources in all but one case (our mobility data comes from a private 

company, SafeGraph). The study is non-experimental, so there was no procedure for blinding.

Timing The most recent versions of our data were downloaded on May 10, 2022.

Data exclusions Counties (and county equivalents) outside of the mainland US (AK, HI) were excluded from the analysis. Out of the 3,243 counties in 
the USA (excluding territories) we the include 3,119 counties (outside of AK, HI) as eligible match units in our statistical analyses. 
Further, include the full set of covered elections over the period of study, all of the Trump rallies, and all BLM protest events larger 
than 800 persons (events smaller than 400 persons were eligible to be match units, events between 400 and 800 were excluded from 
the analysis to ensure that any potentially significant event were not included as match units). Data exclusions were established prior 
to the analysis of the data, and are described in detail in the Methods section of the paper.

Non-participation We did not work with human subjects for this analysis.

Randomization We did not make use of a randomized experimental design. However, we adjusted for an extensive set of covariates using a statistical 
matching procedure designed for panel data with multiple treatments. More specifically, covariate adjustment is conducted using a 
matching procedure whereby the five best matches are selected and used for each treated county. For each model, the quality of the 
five best matches was examined with reference to a balance score, calculated based on the standardized distance between a 
matched unit and its best matches in terms of covariate similarity. In each case, acceptable balance scores were obtained, on 
average, for each matching covariate. This approach also allows for time-varying treatments that can occur multiple times over the 
observed window. We used a range of variables describing the counties, including demographic, political, and mobility variables. Our 
mobility data tracks daily visits to points of interest at individual locations across the US in census block groups, typically covering 
between 600-3,000 individuals, aggregated to our 3,119 counties. Mobility data has previously been linked to the spread of 
COVID-19. Many existing studies use general movement patterns, such as overall time spent away from home, which does not 
necessarily indicate whether individuals engage in the sort of close interpersonal contact that is heavily responsible for the spread of 
COVID-19. However, more recent studies have used finer-grained mobility metrics in line with our approach. We track movement 
specifically at full-service restaurants, grocers, and fitness and recreation facilities, some of which are known to be high-risk locations, 
and directly include these measures in the matching procedure.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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