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A random world is a fair world
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A preference for fairness or equity in the
distribution of resources influences many
human decisions (1). The origin of this pref-
erence is a topic that has consumed philos-
ophers (2), social scientists (3), and biologists
(4) for centuries. However, although we feel
a sense of fairness deeply and intuitively, it
has so far been difficult to explain from first
principles how such a feeling might have
evolved. How could natural selection allow
for the survival of “fair” individuals who
sometimes give things away to equalize re-
sources when they must compete with self-
interested individuals who keep everything
for themselves? In PNAS, Rand et al. (5)
provide a unique and compelling solution
to this puzzle: it’s all because of dumb luck.

To study fairness, authors use the so-called
“ultimatum game” (6). In this game, one
person (the proposer) offers a specific divi-
sion of a sum of money, and the other (the
responder) decides whether to accept this
offer. If the responder accepts, they each re-
ceive the amount of money as proposed. If
the responder rejects the offer, they each re-
ceive nothing. If both players are rational
and self-interested and they play the game
only once, then the responder should ac-
cept any nonzero offer (something is better
than nothing!). Knowing that, the proposer
should offer slightly more than zero to the
responder and keep the rest for himself.

However, this result is not what we ob-
serve, anywhere. Dozens of studies in both
large (7) and small-scale (8) societies show
that proposers tend to make “fair” offers, in
the range of 30-50% for the responder.
Furthermore, responders tend to demand
such behavior, rejecting offers when they
fall below 20-35%.

Past efforts to explain the origin of these
preferences have used deterministic game
theory, which assumes that individuals with
higher expected payoffs will always come to
dominate the population (9). These models
cannot explain fair offers or rejection of
nonzero offers without making additional
assumptions. For example, if we assume indi-
viduals have information about others” past

behavior, then they can make strategies
contingent on the reputation of their oppo-
nents, and this will benefit individuals with
a reputation for rejecting low offers. How-
ever, how did the individuals get this in-
formation? And how do they avoid being
exploited by individuals who can fake such
a reputation? The additional assumptions are
complex and hard to justify.

Instead, Rand et al. (5) return to first prin-
ciples and use a different approach. Rather
than assuming that evolution is determin-
istic, they assume it is stochastic. In reality,
evolution sometimes favors the lucky, espe-
cially when the relationship between payoffs
and survival is weak. This theory means a
variety of strategies can endure and the
winning strategy must do well in such an
environment. Intuitively, if some of the res-
ponders are rejecting nonzero offers—not
because it is the best strategy but because
it happens to survive sometimes—then pro-
posers need to make fairer offers.

Proximate selfish
behavior can be bad
for you, and under
evolutionary pressure
may not even survive.

Remarkably, when Rand et al. (5) apply
stochastic evolutionary game theory in this
way, they find that offers exceed demands
and demands are greater than zero, just as
they are in the empirical data. This result
is true under a very wide range of possible
scenarios when they vary selection (the re-
lationship between payoffs and survival) and
mutation (the likelihood that an individual
chooses a random strategy). In fact, in some
of these scenarios, they can exactly reproduce
the average offer and the average demand
from experiments in behavioral economics.

If the article ended there it would already
be impressive for the way this work explains
the observed data with the most parsimonious
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model to date. However, Rand et al. (5) also
use the model to make two unique predic-
tions, both of which are confirmed by care-
ful measurement in a sample of 140 subjects.
First, as selection becomes weaker, it in-
creases the likelihood of survival for both
proposers and responders who try alterna-
tive strategies. Therefore, people living in
circumstances where it is harder to assess
the success of others’ strategies should make
both higher offers and higher demands. Sec-
ond, as the rate of mutation increases, it di-
rectly increases the average offer because the
average without mutation is less than one-
half. However, the effect of mutation on
demands is more ambiguous. Random de-
mands will tend to increase the average be-
cause they are also below one-half, but there
is more to lose from rejection because the
offers tend to be higher, and this favors lower
demands. Therefore, people living in circum-
stances where others are inconsistent in their
behavior should make higher offers but not
necessarily have higher demands.

Why Randomness Matters
It may seem remarkable that randomness is
what drives “fair” behavior in this model, but
it is consistent with what we know about
other human behaviors that apparently defy
rational explanation: uncertainty is key.
For example, it is well known that hu-
mans tend to exhibit overconfidence. When
making interpersonal comparisons on a wide
variety of traits, most people think they are
above average. Such a bias might cause
individuals to engage in contests they are
sure to lose. However, uncertainty about
capabilities means that the overconfident are
also more likely to win other contests be-
cause less-confident individuals may decide
not to enter the contest in the first place.
As a consequence, evolutionary models show
that, counterintuitively, overconfidence max-
imizes individual fitness and populations
tend to become overconfident under a wide
variety of conditions (10). Similar behav-
ior in the face of uncertainty is observed in
physician prognostication (11).
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Stochastic evolutionary game theory has
not yet been widely used, but it is already
yielding a variety of promising results, fitting
empirical data on human behavior better
than deterministic models (12, 13). An im-
portant conceptual innovation in the sto-
chastic theory is that selection is not the
only important factor in evolution. Muta-
tion is also important, and it is the balance
between mutation and selection that ulti-
mately matters for determining evolutionary
outcomes. Although this may seem to com-
plicate deterministic models, many basic
models yield elegant closed-form solutions
(14) and the analogs to agent-based evo-
lutionary models are direct and easy to
interpret.

For example, Nowak, Tarnita, and Wilson
(15) recently applied stochastic evolutionary
game theory to the problem of eusociality
and showed that it could help to explain
group-level evolutionary outcomes without
any extra assumptions about “inclusive fit-
ness.” Although dozens of other scholars
wrote rebuttals (16) to this work (primarily
to defend their use of more approximate
models), these responses did not counter an
important point: inclusive fitness theory is a
special case of a more general model that is
simply based on individual selection under
mutation and a precise elaboration of the
set of interactions among individuals in the
population. Thus, a random world is also
one in which we can better understand how
individual selection can drive group behavior.

Next Steps
An important challenge for stochastic game
theory is whether or not it can be used to
predict individual-level behavior. The model
elaborated by Rand et al. (5) does an excel-
lent job in matching population averages
but, as they show in their supplementary
information, there is wider variance in in-
dividual strategies than is normally present
in empirical data. For example, their model
yields too many individuals who make and
demand offers above 50%.

Stochastic learning theory has faced similar
challenges. Simple rules based on reinforce-
ment learning (17) were used successfully to
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explain aggregate behavior in pigeons, gold-
fish, and, in some situations, in humans, but
they were abandoned by psychologists in the
1970s in part for their inability to predict
individual-level behavior (7). However, this
disconnect between group and individual
results may be easy to fix simply by adjust-
ing a functional form in the model. For
example, a simple model of voter behavior
generates more realistic individual-level re-
sults when reinforcement yields fixed per-
centage changes in behavior rather than
changes that become smaller near-extreme
values (18). Similarly, in the Rand et al. (5)
model, it may be the case that local muta-
tion yields less variance in individual be-
havior than global mutation, and in fact this
may be a way to test what kinds of explora-
tion strategies are most likely.

Given that the Rand et al. (5) model can
be interpreted as either a learning or natural-
selection model, it suggests a wide variety of
possible mechanisms. Some of these mecha-
nisms could be cultural, such as those ad-
vanced by Henrich et al. in their study of
ultimatum game play in several small-scale
societies (8). It would be interesting to con-
duct the same experiment used by Rand
et al. in each of these societies to see if vari-
ation in expectations about successful oppo-
nents and the mutability of their game play

could explain variation in mean offers and
demands. Other work suggests that variation
in ultimatum game play is heritable; in other
words, genetic variation is, in part, driving
the different strategies that people use when
they play the ultimatum game (19). In addi-
tion, functional MRI studies of other behav-
ioral games suggests that the ventromedial
prefrontal cortex and the insula may play
a mediating role between genes and a sense
of fairness (20). Although the insula result
has been interpreted in the context of its
association with social decision-making, it
would be interesting to see if the ventro-
medial prefrontal cortex activation is driven
by processing expectations about others
strategies.

Finally, although Rand et al. (5) generate
their results with a model that is based on
individual natural selection, it is fascinating
that it yields behavior that may otherwise
appear to be based on something else. Rand
et al. call the process “self-interested natural
selection” but later note that “myopic self-
interest is vanquished whereas fairness tri-
umphs.” This is a nice turn of concept.
Proximate selfish behavior can be bad for
you, and under evolutionary pressure may
not even survive because fairness maximizes
individual fitness. It may not be fair to be
selfish, but it is certainly selfish to be fair.
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